19 October 2025

On Geometry (1950-1974)

"Geometrical truth is a product of reason; that makes it superior to empirical truth, which is found through generalization of a great number of instances." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1954)

“[…] no branch of mathematics competes with projective geometry in originality of ideas, coordination of intuition in discovery and rigor in proof, purity of thought, logical finish, elegance of proofs and comprehensiveness of concepts. The science born of art proved to be an art.” (Morris Kline, “Projective Geometry”, Scientific America Vol. 192 (1), 1955)

 "Conventionalism as geometrical and mathematical truths are created by our choices, not dictated by or imposed on us by scientific theory. The idea that geometrical truth is truth we create by the understanding of certain conventions in the discovery of non-Euclidean geometries." (Clifford Singer, "Engineering a Visual Field", 1955)

"Geometry, whatever others may think, is the study of different shapes, many of them very beautiful, having harmony, grace and symmetry. […] Most of us, if we can play chess at all, are content to play it on a board with wooden chess pieces; but there are some who play the game blindfolded and without touching the board. It might be a fair analogy to say that abstract geometry is like blindfold chess – it is a game played without concrete objects." (Edward Kasner & James R Newman, "New Names for Old", 1956)

"Geometry exists in its own right, and by its own strength. It can now treat accurately and coherently a range of forms and spaces that far exceeds anything that terrestrial space can provide. Today it is geometry that contains the terrestrial forms, and not vice versa, for the terrestrial forms are merely special cases in an all-embracing geometry. [...] Geometry now acts as a framework on which all terrestrial forms can find their natural place, with the relations between the various forms readily appreciable." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[...] it is clear that differential geometry, analysis and physics prompted the early development of differential topology (it is this that explains our admitted bias toward differential topology, that it lies close to the main stream of  mathematics). On the other hand, the combinatorial approach to manifolds was started because it was believed that these means would afford a useful attack on the differentiable case." (Steven Smale, "A survey of some recent developments in differential topology", 1961)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"An instance of such a 'non-Euclidean' geometry is projective geometry, concerned with those properties of figures which do not change under projective transformations. Projective geometry is not merely not Euclidean geometry; it is 'very much non-Euclidean'." (Isaak Yaglom, "Geometric Transformations", 1973)

"If indeed one tries to clarify the notion of equality, which is introduced right at the beginning of Geometry, one is led to say that two figures are equal when one can go from one to the other by a specific geometric operation, called a motion. This is only a change of words; but the axiom according to which two figures equal to a third are equal to one another, subjects those operations called motions to a certain law; that is, that an operation which is the result of two successive motions is itself a motion. It is this law that mathematicians express by saying that motions form a group. Elementary Geometry can then be defined by the study of properties of figures which do not change under the operations of the group of motions." (Élie Cartan, "Notice sur les travaux scientifiques", 1974)

"[…] it is the whole logical structure of elementary Geometry which is contained in the group of motions and even, in a more precise manner, in the law according to which operations of that group compose with each other, independently of the nature of the objects on which these operations act. This law constitutes what we call the group structure." (Élie Cartan, "Notice sur les travaux scientifiques", 1974)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Geometry (1975-1999)

“Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry t...