28 May 2019

On Theorems (1925-1949)

“How many properties were there of which the compass knew nothing, how many cunning laws lay contained in embryo within an equation, the mysterious nut which must be artistically cracked to extract the rich kernel, the theorem!” (Jean-Henri Fabre, “The Life of the Fly”, 1925)

„Any mathematical science is a body of theorems deduced from a set of axioms. A geometry is a mathematical science. The question then arises why the name geometry is given to some mathematical sciences and not to others. It is likely that there is no definite answer to this question, but that a branch of mathematics is called a geometry because the name seems good, on emotional and  people.“ (John H C Whitehead, „The Foundation of Differential Geometry“, 1932)

„[...] the abstract mathematical theory has an independent, if lonely existence of its own. But when a sufficient number of its terms are given physical definitions it becomes a part of a vital organism concerning itself at every instant with matters full of human significance. Every theorem can be given the form ‘if you do so and so, such and such will happen'.“ (Oswald Veblen, “Remarks on the Foundation of Geometry”, Bulletin of the American Mathematical Society, Vol. 35, 1935)

“All the theories and hypotheses of empirical science share this provisional character of being established and accepted ‘until further notice’, whereas a mathematical theorem, once proved, is established once and for all; it holds with that particular certainty which no subsequent empirical discoveries, however unexpected and extraordinary, can ever affect to the slightest extent.” (Carl G Hempel, "Geometry and Empirical Science”, 1935)

 „The mathematician is still regarded as the hermit who knows little of the ways of life outside his cell, who spends his time compounding incredible and incomprehensible theorems in a strange, clipped, unintelligible jargon.“ (James R Newman, „Mathematics and the Imagination“, 1940)

 “Perhaps the greatest paradox of all is that there are paradoxes in mathematics […] because mathematics builds on the old but does not discard it, because its theorems are deduced from postulates by the methods of logic, in spite of its having undergone revolutionary changes we do not suspect it of being a discipline capable of engendering paradoxes.” (James R Newman, “Mathematics and the Imagination”, 1940)

„It is a melancholic experience for a professional mathematician to find himself writing about mathematics. The function of a mathematician is to do something, to prove new theorems, to add to mathematics, and not to talk about what he or other mathematicians have done [...] there is no scorn more profound, or on the whole more justifiable, than that of the men who make for the men who explain. Exposition, criticism, appreciation, is work for second-rate minds.“  (Godfrey H Hardy, „A Mathematician's Apology“, 1941)

“The fact that the proof of a theorem consists in the application of certain simple rules of logic does not dispose of the creative element in mathematics, which lies in the choice of the possibilities to be examined.” (Richard Courant & Herbert Robbins, “What Is Mathematics?: An Elementary Approach to Ideas and Methods”, 1941)

"Exact figures have, in principle, the same role in geometry as exact measurements in physics; but, in practice, exact figures are less important than exact measurements because the theorems of geometry are much more extensively verified than the laws of physics. The beginner, however, should construct many figures as exactly as he can in order to acquire a good experimental basis; and exact figures may suggest geometric theorems also to the more advanced. Yet, for the purpose of reasoning, carefully drawn free-hand figures are usually good enough, and they are much more quickly done." (George Pólya, "How to solve it", 1945)

"The materials necessary for solving a mathematical problem are certain relevant items of our formerly acquired mathematical knowledge, as formerly solved problems, or formerly proved theorems. Thus, it is often appropriate to start the work with the question; Do you know a related problem?" (George Pólya, "How to Solve It", 1945)

See also:
Theorems I, II, III, IV, VI, VII, VIII, IX, X

Proofs I, II, III, IV, V,. VI, VII, VIII, IX

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...