27 May 2019

On Theorems (1800-1899)

"It is characteristic of higher arithmetic that many of its most beautiful theorems can be discovered by induction with the greatest of ease but have proofs that lie anywhere but near at hand and are often found only after many fruitless investigations with the aid of deep analysis and lucky combinations." (Carl Friedrich Gauss, 1817)

 "Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparisons and measurements. But it was found practicable, and being practicable was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which was obvious to the most careless observer, and which compose the first principles and ultimate premises of the science." (John S Mill, "System of Logic", 1843)

"Mathematics is peculiarly and preeminently the science of relations, and whether quantity or direction may severally form its object, these are never contemplated in characters purely absolute, but invariably in comparison with other objects like themselves; and it is hence that relations once established by the unerring theorems of the science, we are enabled, disregarding magnitude in itself, to pass indifferently from the finite to the infinite, from the limited regions of sense to those of conception, and with all the assurance and all the certainty that even the geometry of the ancients could confer." (John H W Waugh, Mathematical Essays", 1854)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, „The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems while the root drives into the depths." (Gottlob Frege, "Grundgesetze der Arithmetik", 1893) 

"Many theorems are obvious upon looking at a moderately-sized figure; but the reasoning must be such as to convince the mind of their truth when, from excessive increase or diminution of the scale, the figures themselves have past the boundary even of imagination." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1898)

"In mathematics we see the conscious logical activity of our mind in its purest and most perfect form; here is made manifest to us all the labor and the great care with which it progresses, the precision which is necessary to determine exactly the source of the established general theorems, and the difficulty with which we form and comprehend abstract conceptions; but we also learn here to have confidence in the certainty, breadth, and fruitfulness of such intellectual labor." (Hermann von Helmholtz, "Vorträge und Reden", 1896)

See also:
Theorems I, II, IV, V, VI, VII, VIII, IX, X

Proofs I, II, III, IV, V,. VI, VII, VIII, IX

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...