31 May 2019

On Art: Poetry and Mathematics IV

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality." (Cassius J Keyser, "The Humanization of the Teaching of Mathematics", 1912)

"Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty, cold and austere, like that of a sculpture. without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show. The true spirit of delight, the exaltation, the sense of being more than Man, which is the touchstone of the highest excellence, is to be found in mathematics as surely as poetry." (Bertrand Russell, "The Study of Mathematics", 1919)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, 1935)

"Mathematics is a form of poetry which transcends poetry in that it proclaims a truth; a form of reasoning which transcends reasoning in that it wants to bring about the truth it proclaims; a form of action, of ritual behavior, which does not find fulfilment in the act but must proclaim and elaborate a poetic form of truth." (Salomon Bochner, "Why Mathematics Grows", Journal of the History of Ideas, 1965)

"What binds us to space-time is our rest mass, which prevents us from flying at the speed of light, when time stops and space loses meaning. In a world of light there are neither points nor moments of time; beings woven from light would live ‘nowhere’ and ‘nowhen’; only poetry and mathematics are capable of speaking meaningfully about such things." (Yuri I Manin, "Space-Time as a Physical System", 1981)

 "Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors." (John Casti, "Reality Rules", 1992)

"Whatever the ins and outs of poetry, one thing is clear: the manner of expression - notation - is fundamental. It is the same with mathematics - not in the aesthetic sense that the beauty of mathematics is tied up with how it is expressed - but in the sense that mathematical truths are revealed, exploited and developed by various notational innovations." (James R Brown, "Philosophy of Mathematics", 1999)

"We all know what we like in music, painting or poetry, but it is much harder to explain why we like it. The same is true in mathematics, which is, in part, an art form. We can identify a long list of desirable qualities: beauty, elegance, importance, originality, usefulness, depth, breadth, brevity, simplicity, clarity. However, a single work can hardly embody them all; in fact, some are mutually incompatible. Just as different qualities are appropriate in sonatas, quartets or symphonies, so mathematical compositions of varying types require different treatment." (Michael Atiyah, "Mathematics: Art and Science" Bulletin of the AMS 43, 2006)

"Poetry and code - and mathematics - make us read differently from other forms of writing. Written poetry makes the silent reader read three kinds of pattern at once; code moves the reader from a static to an active, interactive and looped domain; while algebraic topology allows us to read qualitative forms and their transformations." (Stephanie Strickland & Cynthia L Jaramillo, "Dovetailing Details Fly Apart - All over, again, in code, in poetry, in chreods", 2007)

"Symmetry is a fundamental organizing principle of shape. It helps in classifying and understanding patterns in mathematics, nature, art, and, of course, poetry. And often the counterpoint to symmetry - the breaking or interruption of symmetry - is just as important in creative endeavors." (Marcia Birken & Anne C. Coon, "Discovering Patterns in Mathematics and Poetry", 2008)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...