27 May 2019

On Theorems (2000-2009)

"Theorems are fun especially when you are the prover, but then the pleasure fades. What keeps us going are the unsolved problems." (Carl Pomerance, 2000)

"Despite the unworldly nature of mathematics, mathematicians still have egos that need massaging. Nothing acts as a better drive to the creative process than the thought of the immortality bestowed by having your name attached to a theorem.” (Marcus du Sautoy, "The Music of the Primes”, 2003)

"A theorem is never arrived at in the way that logical thought would lead you to believe or that posterity thinks. It is usually much more accidental, some chance discovery in answer to some kind of question. Eventually you can rationalize it and say that this is how it fits. Discoveries never happen as neatly as that. You can rewrite history and make it look much more logical, but actually it happens quite differently.” (Sir Michael Atiyah, 2004)

"Elegance and simplicity should remain important criteria in judging mathematics, but the applicability and consequences of a result are also important, and sometimes these criteria conflict. I believe that some fundamental theorems do not admit simple elegant treatments, and the proofs of such theorems may of necessity be long and complicated. Our standards of rigor and beauty must be sufficiently broad and realistic to allow us to accept and appreciate such results and their proofs. As mathematicians we will inevitably use such theorems when it is necessary in the practice our trade; our philosophy and aesthetics should reflect this reality.” (Michael Aschbacher, "Highly complex proofs and implications.", ‘Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences’ Vol. 363 (1835), 2005)

"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Mathematicians, then, do not just care about proving theorems: they care about proving interesting, deep, fruitful theorems, by means of elegant, ingenious, explanatory, memorable, or even amusing proofs. If we wish to understand more about the character of mathematical knowledge, we ought to investigate these kinds of evaluative claims made by mathematicians.” (Mary Leng ["Mathematical Knowledge”, Ed. by Mary Leng, Alexander Paseau and Michael Potter], 2007)

"Mathematics as done by mathematicians is not just heaping up statements logically deduced from the axioms. Most such statements are rubbish, even if perfectly correct. A good mathe matician will look for interesting results. These interesting results, or theorems, organize themselves into meaningful and natural structures, and one may say that the object of mathematics is to find and study these structures." (David Ruelle, "The Mathematician's Brain", 2007)

"What we get at the end is a mathematical theory: a human construct that, unavoidably, uses concepts introduced by definitions. And the concepts evolve in time because mathematical theories have a life of their own. Not only are theorems proved and new concepts named, but at the same time old concepts are reworked and redefined." (David Ruelle, "The Mathematician's Brain", 2007)

"Why are proofs so important? Suppose our task were to construct a building. We would start with the foundations. In our case these are the axioms or definitions - everything else is built upon them. Each theorem or proposition represents a new level of knowledge and must be firmly anchored to the previous level. We attach the new level to the previous one using a proof. So the theorems and propositions are the new heights of knowledge we achieve, while the proofs are essential as they are the mortar which attaches them to the level below. Without proofs the structure would collapse." (Sidney A Morris, "Topology without Tears", 2007)

"Obviously, the final goal of scientists and mathematicians is not simply the accumulation of facts and lists of formulas, but rather they seek to understand the patterns, organizing principles, and relationships between these facts to form theorems and entirely new branches of human thought.” (Clifford A Pickover, "The Math Book”, 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...