09 May 2019

On Proofs (2010 - 2019)

"A proof in mathematics is a compelling argument that a proposition holds without exception; a disproof requires only the demonstration of an exception. A mathematical proof does not, in general, establish the empirical truth of whatever is proved. What it establishes is that whatever is proved - usually a theorem - follows logically from the givens, or axioms." (Raymond S Nickerson, "Mathematical Reasoning", 2010)

"A mathematical proof is a watertight argument which begins with information you are given, proceeds by logical argument, and ends with what you are asked to prove." (Sydney A Morris, "Topology without Tears", 2011)

"Once a mathematical result is proven to the satisfaction of the discipline, it doesn’t need to be re-evaluated in the light of new evidence or refuted, unless it contains a mistake. If it was true for Archimedes, then it is true today." (Peter Rowlett, "The Unplanned Impact of Mathematics", Nature, 2011)

"To get a true understanding of the work of mathematicians, and the need for proof, it is important for you to experiment with your own intuitions, to see where they lead, and then to experience the same failures and sense of accomplishment that mathematicians experienced when they obtained the correct results. Through this, it should become clear that, when doing any level of mathematics, the roads to correct solutions are rarely straight, can be quite different, and take patience and persistence to explore." (Alan Sultan & Alice F Artzt, "The Mathematics that every Secondary School Math Teacher Needs to Know", 2011)

"[…] if one has a theory, one needs to be willing to try to prove it wrong as much as one tries to provide that it is right […]" (Lawrence M Krauss et al, A Universe from Nothing, 2013)

"What  brings  us  mathematical  knowledge?  The  carriers  of mathematical knowledge  are  proofs, more  generally  arguments  and constructions,  as embedded  in  larger  contexts. Mathematicians  and teachers  of higher mathematics  know  this,  but  it  should  be  said. Issues  about  competence  and intuition  can be  raised as  well  as  factors  of knowledge  involving  the general  dissemination  of analogical  or inductive  reasoning  or the  specific conveyance  of methods,  approaches  or ways  of thinking.  But  in the  end, what  can be  directly  conveyed  as  knowledge  are  proofs." (Akihiro Kanamori, "Mathematical  Knowledge:  Motley and  Complexity of Proof",  Annals  of  the  Japan Association  for  Philosophy  of  Science Vol. 21, 2013)

"Proof, in fact, is the requirement that makes great problems problematic. Anyone moderately competent can carry out a few calculations, spot an apparent pattern, and distil its essence into a pithy statement. Mathematicians demand more evidence than that: they insist on a complete, logically impeccable proof. Or, if the answer turns out to be negative, a disproof. It isn’t really possible to appreciate the seductive allure of a great problem without appreciating the vital role of proof in the mathematical enterprise. Anyone can make an educated guess. What’s hard is to prove it’s right. Or wrong." (Ian Stewart, "Visions of Infinity", 2013)

"The human mind builds up theories by recognising familiar patterns and glossing over details that are well understood, so that it can concentrate on the new material. In fact it is limited by the amount of new information it can hold at any one time, and the suppression of familiar detail is often essential for a grasp of the total picture. In a written proof, the step-by-step logical deduction is therefore foreshortened where it is already a part of the reader’s basic technique, so that they can comprehend the overall structure more easily." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"The need for overall understanding is not just aesthetic or educational. The human mind tends to make errors: errors of fact, errors of judgement, errors of interpretation. In the step-by-step method we might not notice that one line is not a logical consequence of preceding ones. Within the overall framework, however, if an error leads to a conclusion that does not fit into the total picture, the conflict will alert us to the possibility of a mistake." (Ian Stewart & David Tall, "The Foundations of Mathematics" 2nd Ed., 2015)

"Mathematics is a fascinating discipline that calls for creativity, imagination, and the mastery of rigorous standards of proof." (John Meier & Derek Smith, "Exploring Mathematics: An Engaging Introduction to Proof", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...