29 March 2020

About Mathematicians (1980-1989)

“When a mathematician asks himself why some result should hold, the answer he seeks is some intuitive understanding. In fact, a rigorous proof means nothing to him if the result doesn’t make sense intuitively.” (Morris Kline, “Mathematics: The Loss of Certainty”, 1980)

"A mathematician’s work is mostly a tangle of guesswork, analogy, wishful thinking and frustration, and proof, far from being the core of discovery, is more often than not a way of making sure that our minds are not playing tricks." (Gian-Carlo Rota, 1981)

"For the great majority of mathematicians, mathematics is […] a whole world of invention and discovery - an art. The construction of a new theorem, the intuition of some new principle, or the creation of a new branch of mathematics is the triumph of the creative imagination of the mathematician, which can be compared to that of a poet, the painter and the sculptor." (George F J Temple, "100 Years of Mathematics: a Personal Viewpoint", 1981)

"In the initial stages of research, mathematicians do not seem to function like theorem-proving machines. Instead, they use some sort of mathematical intuition to ‘see’ the universe of mathematics and determine by a sort of empirical process what is true. This alone is not enough, of course. Once one has discovered a mathematical truth, one tries to find a proof for it." (Rudy Rucker, "Infinity and the Mind: The science and philosophy of the infinite", 1982)

"[…] a mathematician's ultimate concern is that his or her inventions be logical, not realistic. This is not to say, however, that mathematical inventions do not correspond to real things. They do, in most, and possibly all, cases. The coincidence between mathematical ideas and natural reality is so extensive and well documented, in fact, that it requires an explanation. Keep in mind that the coincidence is not the outcome of mathematicians trying to be realistic - quite to the contrary, their ideas are often very abstract and do not initially appear to have any correspondence to the real world. Typically, however, mathematical ideas are eventually successfully applied to describe real phenomena […]"(Michael Guillen, "Bridges to Infinity: The Human Side of Mathematics", 1983)

"Mathematicians might actually be looking at life with a most trenchant sense - one that perceives things the other five senses cannot." (Michael Guillen, "Bridges to Infinity: The Human Side of Mathematics", 1983) 

“[…] mathematics is not a science – it is not capable of proving or disproving the existence of real things. In fact, a mathematician’s ultimate concern is that his or her inventions be logical, not realistic.” (Michael Guillen, “Bridges to Infinity: The Human Side of Mathematics”, 1983)

"Mathematics has been called the science of the infinite. Indeed, the mathematician invents finite constructions by which questions are decided that by their very nature refer to the infinite. This is his glory." (Hermann Weyl, "Axiomatic versus constructive procedures in mathematics" , The Mathematical Intelligencer, 1985)

"Mathematics is not a deductive science - that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. You want to find out what the facts are, and what you do is in that respect similar to what a laboratory technician does. Possibly philosophers would look on us mathematicians the same way as we look on the technicians, if they dared." (Paul R Halmos, "I Want to be a Mathematician: An Automathography", 1985)

"There are many things you can do with problems besides solving them. First you must define them, pose them. But then of course you can also refi ne them, depose them, or expose them or even dissolve them! A given problem may send you looking for analogies, and some of these may lead you astray, suggesting new and different problems, related or not to the original. Ends and means can get reversed. You had a goal, but the means you found didn’t lead to it, so you found a new goal they did lead to. It’s called play. Creative mathematicians play a lot; around any problem really interesting they develop a whole cluster of analogies, of playthings." (David Hawkins, "The Spirit of Play", Los Alamos Science, 1987

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...