05 March 2020

On Feedback (2000-2009)

"All dynamics arise from the interaction of just two types of feedback loops, positive (or self-reinforcing) and negative (or self-correcting) loops. Positive loops tend to reinforce or amplify whatever is happening in the system […] Negative loops counteract and oppose change." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The self-reinforcing feedback between expectations and perceptions has been repeatedly demonstrated […]. Sometimes the positive feedback assists learning by sharpening our ability to perceive features of the environment, as when an experienced naturalist identifies a bird in a distant bush where the novice sees only a tangled thicket. Often, however, the mutual feedback of expectations and perception blinds us to the anomalies that might challenge our mental models and lead to deep insight." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

“The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"All models are mental projections of our understanding of processes and feedbacks of systems in the real world. The general approach is that models are as good as the system upon which they are based. Models should be designed to answer specific questions and only incorporate the necessary details that are required to provide an answer." (Hördur V Haraldsson & Harald U Sverdrup, "Finding Simplicity in Complexity in Biogeochemical Modelling", 2004)

"[…] some systems […] are very sensitive to their starting conditions, so that a tiny difference in the initial ‘push’ you give them causes a big difference in where they end up, and there is feedback, so that what a system does affects its own behavior." (John Gribbin, "Deep Simplicity", 2004)

"Feedback and its big brother, control theory, are such important concepts that it is odd that they usually find no formal place in the education of physicists. On the practical side, experimentalists often need to use feedback. Almost any experiment is subject to the vagaries of environmental perturbations. Usually, one wants to vary a parameter of interest while holding all others constant. How to do this properly is the subject of control theory. More fundamentally, feedback is one of the great ideas developed (mostly) in the last century, with particularly deep consequences for biological systems, and all physicists should have some understanding of such a basic concept." (John Bechhoefer, "Feedback for physicists: A tutorial essay on control", Reviews of Modern Physics Vol. 77, 2005)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"The notion of feedback to regulate servomechanisms is the control engineer’s contribution to understanding how systems can be sensed, and then sufficient sense made of this for the purpose of having the system behave agreeably. The cleverness of control has been to influence systems behavior when a priori knowledge of that system is difficult or impossible to achieve. Usually you need to know what it is you are controlling to have a chance of regulating its behavior; that is one consequence of the law of requisite variety." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"A perturbation in a system with a negative feedback mechanism will be reduced whereas in a system with positive feedback mechanisms, the perturbation will grow. Quite often, the system dynamics can be reduced to a low-order description. Then, the growth or decay of perturbations can be classified by the systems’ eigenvalues or the pseudospectrum." (Gerrit Lohmann, "Abrupt Climate Change Modeling", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...