30 March 2020

Mathematicians vs. Physicists I

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

"Our environment may and should mean something towards us which is not to be measured with the tools of the physicist or described by the metrical symbols of the mathematician." (Arthur S Eddington, "Science and the Unseen World", 1929)

"[…] there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, [...] the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as 'real', but [...] [a physicist] is trying to correlate the incoherent body of crude fact confronting him with some definite and orderly scheme of abstract relations, the kind of scheme he can borrow only from mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

"The mathematicians know a great deal about very little and the physicists very little about a great deal." (Stanislaw Ulam, "On the Ergodic Behavior of Dynamical Systems", 1955) 

"The mathematicians and physics men Have their mythology; they work alongside the truth, Never touching it; their equations are false But the things work. Or, when gross error appears, They invent new ones; they drop the theory of waves In universal ether and imagine curved space." (Robinson Jeffers," The Beginning and the End and Other Poems, The Great Wound", 1963) 

"When the problems in physics become difficult we may often look to the mathematician who may already have studied such things and have prepared a line of reasoning for us to follow. On the other hand they may not have, in which case we have to invent our own line of reasoning, which we then pass back to the mathematician." (Richard Feynman,"The Character of Physical Law", 1965)

"Empirical evidence can never establish mathematical existence--nor can the mathematician's demand for existence be dismissed by the physicist as useless rigor. Only a mathematical existence proof can ensure that the mathematical description of a physical phenomenon is meaningful." (Richard Courant, "The Parsimonious Universe, Stefan Hildebrandt & Anthony Tromba", 1996) 

"[…] mathematicians are much more concerned for example with the structure behind something or with the whole edifice. Mathematicians are not really puzzlers. Those who really solve mathematical puzzles are the physicists. If you like to solve mathematical puzzles, you should not study mathematics but physics!" (Carlo Beenakker, [interview] 2006)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 2007)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...