29 March 2020

About Mathematicians (2010-2019)

"In the broad light of day mathematicians check their equations and their proofs, leaving no stone unturned in their search for rigour. But, at night, under the full moon, they dream, they float among the stars and wonder at the miracle of the heavens. They are inspired. Without dreams there is no art, no mathematics, no life." (Michael F Atiyah, "The Art of Mathematics", 2010)

"[…] intuition is a very important factor in the psychology of mathematics, in the sense that mathematicians spend a great deal of time exploring guesses and checking out hunches in their efforts to discover and prove new theorems." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2010)

"A surprising proportion of mathematicians are accomplished musicians. Is it because music and mathematics share patterns that are beautiful?" (Martin Gardner, "The Dover Math and Science Newsletter", 2011)

"To get a true understanding of the work of mathematicians, and the need for proof, it is important for you to experiment with your own intuitions, to see where they lead, and then to experience the same failures and sense of accomplishment that mathematicians experienced when they obtained the correct results. Through this, it should become clear that, when doing any level of mathematics, the roads to correct solutions are rarely straight, can be quite different, and take patience and persistence to explore.” (Alan Sultan & Alice F Artzt, “The Mathematics that every Secondary School Math Teacher Needs to Know”, 2011)

“Often the key contribution of intuition is to make us aware of weak points in a problem, places where it may be vulnerable to attack. A mathematical proof is like a battle, or if you prefer a less warlike metaphor, a game of chess. Once a potential weak point has been identified, the mathematician’s technical grasp of the machinery of mathematics can be brought to bear to exploit it.” (Ian Stewart, “Visions of Infinity”, 2013)

"Proof, in fact, is the requirement that makes great problems problematic. Anyone moderately competent can carry out a few calculations, spot an apparent pattern, and distil its essence into a pithy statement. Mathematicians demand more evidence than that: they insist on a complete, logically impeccable proof. Or, if the answer turns out to be negative, a disproof. It isn’t really possible to appreciate the seductive allure of a great problem without appreciating the vital role of proof in the mathematical enterprise. Anyone can make an educated guess. What’s hard is to prove it’s right. Or wrong.” (Ian Stewart, "Visions of Infinity", 2013)

"Models can be: formulations, abstractions, replicas, idealizations, metaphors - and combinations of these. [...] Some mathematical models have been blindly used - their presuppositions as little understood as any legal fine print one ‘agrees to’ but never reads - with faith in their trustworthiness. The very arcane nature of some of the formulations of these models might have contributed to their being given so much credence. If so, we mathematicians have an important mission to perform: to help people who wish to think through the fundamental assumptions underlying models that are couched in mathematical language, making these models intelligible, rather than (merely) formidable Delphic oracles.” (Barry Mazur, "The Authority of the Incomprehensible" , 2014)

"A mathematician possesses a mental model of the mathematical entity she works on. This internal mental model is accessible to her direct observation and manipulation. At the same time, it is socially and culturally controlled, to conform to the mathematics community's collective model of the entity in question. The mathematician observes a property of her own internal model of that mathematical entity. Then she must find a recipe, a set of instructions, that enables other competent, qualified mathematicians to observe the corresponding property of their corresponding mental model. That recipe is the proof. It establishes that property of the mathematical entity." (Reuben Hersh," Mathematics as an Empirical Phenomenon, Subject to Modeling", 2017)

"Mathematical rigour is the thing that enables mathematicians to agree with one another about what is and isn’t correct, rather than just having arguments about competing theories and never coming to a conclusion. Mathematics is based on the rules of logic, the idea being that if you only use objects that behave strictly according to the rules of logic, then as long as you only strictly apply the rules of logic, no disagreements can ever arise."(Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

"Mathematicians start by playing around with ideas to get a feel for what might be possible, good and bad." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

"Mathematics often develops by mathematicians feeling frustrated about being unable to do something in the existing world, so they invent a new world in which they can do it."(Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

"The Axiom of Choice says that it is possible to make an infinite number of arbitrary choices. […] Mathematicians don’t exactly care whether or not the Axiom of Choice holds over all, but they do care whether you have to use it in any given situation or not." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...