27 November 2020

Saunders Mac Lane - Collected Quotes

"In a metamathematical sense our theory provides general concepts applicable to all branches of abstract mathematics, and so contributes to the current trend towards uniform treatment of different mathematical disciplines. In particular, it provides opportunities for the comparison of constructions and of the isomorphisms occurring in different branches of mathematics; in this way it may occasionally suggest new results by analogy." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"It should be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are essentially those of a functor and of a natural transformation […]. The idea of a category is required only by the precept that every function should have a definite class as domain and a definite class as range, for the categories are provided as the domains and ranges of functors. Thus one could drop the category concept altogether […]" (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"The invariant character of a mathematical discipline can be formulated in these terms. Thus, in group theory all the basic constructions can be regarded as the definitions of co- or contravariant functors, so we may formulate the dictum: The subject of group theory is essentially the study of those constructions of groups which behave in a covariant or contravariant manner under induced homomorphisms." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"The subject of group theory is essentially the study of those constructions of groups which behave in a covariant or contravariant manner under induced homomorphisms. More precisely, group theory studies functors defined on well specified categories of groups, with values in another such category." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"The theory [of categories] also emphasizes that, whenever new abstract objects are constructed in a specified way out of given ones, it is advisable to regard the construction of the corresponding induced mappings on these new objects as an integral part of their definition. The pursuit of this program entails a simultaneous consideration of objects and their mappings (in our terminology, this means the consideration not of individual objects but of categories). This emphasis on the specification of the type of mappings employed gives more insight onto the degree of invariance of the various concepts involved." (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas.” (Saunders MacLane, "Of Course and Courses", The American Mathematical Monthly, Vol. 61, No. 3, March, 1954)

"Categorical algebra has developed in recent years as an effective method of organizing parts of mathematics. Typically, this sort of organization uses notions such as that of the category G of all groups. [...] This raises the problem of finding some axiomatization of set theory - or of some foundational discipline like set theory - which will be adequate and appropriate to realizing this intent. This problem may turn out to have revolutionary implications vis-`a-vis the accepted views of the role of set theory." (Saunders Mac Lane, "Categorical algebra and set-theoretic foundations", 1967)

"Just as each generation of historians must analyse the past again, so in the exact sciences we must in each period take up the renewed struggle to present as clearly as we can the underlying ideas of mathematics." (Saunders Mac Lane, "Hamiltonian Mechanics and Geometry", The American Mathematical Monthly Vol. 77 (6), 1970)

"Many cumbersome developments in the standard treatments of mechanics can be simplified and better understood when formulated with modern conceptual tools, as in the well-known case of the use of the 'universal' definition of tensor products of vector spaces to simplify some of the notational excesses of tensor analysis as traditionally used in relativity theory" (Saunders Mac Lane, "Hamiltonian Mechanics and Geometry", The American Mathematical Monthly Vol. 77 (6), 1970)

"Category theory starts with the observation that many properties of mathematical systems can be unified and simplified by a presentation with diagrams of arrows." (Saunders Mac Lane, "Categories for the Working Mathematician", 1971)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lane, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...