"A vital phenomenon can only be regarded as explained if it has been proven that it appears as the result of the material components of living organisms interacting according to the laws which those same components follow in their interactions outside of living systems." (Adolf E Fick, "Gesammelte Schriften" Vol. 3, 1904)
"Since the fundamental character of the living thing is its organization, the customary investigation of the single parts and processes cannot provide a complete explanation of the vital phenomena. This investigation gives us no information about the coordination of parts and processes. Thus, the chief task of biology must be to discover the laws of biological systems (at all levels of organization). We believe that the attempts to find a foundation for theoretical biology point at a fundamental change in the world picture. This view, considered as a method of investigation, we shall call ‘organismic biology’ and, as an attempt at an explanation, ‘the system theory of the organism’." (Ludwig von Bertalanffy, “Kritische Theorie der Formbildung”, 1928)
"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)
"General systems theory is a series of related definitions, assumptions, and postulates about all levels of systems from atomic particles through atoms, molecules, crystals, viruses, cells, organs, individuals, small groups, societies, planets, solar systems, and galaxies. General behavior systems theory is a subcategory of such theory, dealing with living systems, extending roughly from viruses through societies. A significant fact about living things is that they are open systems, with important inputs and outputs. Laws which apply to them differ from those applying to relatively closed systems." (James G Miller, "General behavior systems theory and summary", Journal of Counseling Psychology 3 (2), 1956)
"A system is primarily a living system, and the process which defines it is the maintenance of an organization which we know as life." (Ralph W Gerard, "Units and Concepts of Biology", 1958)
"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)
"The homeostatic principle does not apply literally to the functioning of all complex living systems, in that in counteracting entropy they move toward growth and expansion." (Daniel Katz, "The Social Psychology of Organizations", 1966)
"Conventional physics deals only with closed systems, i.e. systems which are considered to be isolated from their environment. [...] However, we find systems which by their very nature and definition are not closed systems. Every living organism is essentially an open system. It maintains itself in a continuous inflow and outflow, a building up and breaking down of components, never being, so long as it is alive, in a state of chemical and thermodynamic equilibrium but maintained in a so-called steady state which is distinct from the latter." (Ludwig von Bertalanffy, "General System Theory", 1968)
"My analysis of living systems uses concepts of thermodynamics, information theory, cybernetics, and systems engineering, as well as the classical concepts appropriate to each level. The purpose is to produce a description of living structure and process in terms of input and output, flows through systems, steady states, and feedbacks, which will clarify and unify the facts of life." (James G Miller, "Living Systems: Basic Concepts", 1969)
No comments:
Post a Comment