17 February 2021

On Structure: Structure in Mathematics (1980-1989)

"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)

"Philosophical objections may be raised by the logical implications of building a mathematical structure on the premise of fuzziness, since it seems (at least superficially) necessary to require that an object be or not be an element of a given set. From an aesthetic viewpoint, this may be the most satisfactory state of affairs, but to the extent that mathematical structures are used to model physical actualities, it is often an unrealistic requirement. [...] Fuzzy sets have an intuitively plausible philosophical basis. Once this is accepted, analytical and practical considerations concerning fuzzy sets are in most respects quite orthodox." (James Bezdek, 1981)

"The formalist makes a distinction between geometry as a deductive structure and geometry as a descriptive science. Only the first is regarded as mathematical. The use of pictures or diagrams, or even mental imagery, all are non- mathematical. In principle, they should be unnecessary. Consequently. he regards them as inappropriate in a mathematics text, perhaps even in a mathematics class." (Philip J Davis & Reuben Hersh, "The Mathematical Experience", 1981)

"[…] mathematics is not just a symbolism, a set of conventions for the use of special, formal vocabularies, but is intimately connected with the structure of rational thought, with reasoning practices. [...] mathematics is not just a language, and of refusing the foundationalist move of trying to reduce mathematics to logic, instead seeing mathematics as providing rational frameworks for science, is to set science against a background of rational structures and rational methods which itself has a built-in dynamics. The rational framework of science is itself historically conditioned, for it changes with developments in mathematics." (Mary Tiles, "Bachelard: Science and Objectivity", 1984)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does." (James Burke, "The Day the Universe Changed", 1985) 

"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)

"Somehow, after all, as the universe ebbs toward its final equilibrium in the featureless heat bath of maximum entropy, it manages to create interesting structures." (James Gleick, "Chaos: Making a New Science", 1987)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...