17 February 2021

On Structure: Structure in Mathematics (2000-2009)

"Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!" (Gregory J Chaitin, "A century of controversy over the foundations of mathematics", 2000)

"Most physical systems, particularly those complex ones, are extremely difficult to model by an accurate and precise mathematical formula or equation due to the complexity of the system structure, nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often necessary and practical in real-world applications. Intuitively, approximate modeling is always possible. However, the key questions are what kind of approximation is good, where the sense of 'goodness' has to be first defined, of course, and how to formulate such a good approximation in modeling a system such that it is mathematically rigorous and can produce satisfactory results in both theory and applications." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Our world resonates with patterns. The waxing and waning of the moon. The changing of the seasons. The microscopic cell structure of all living things have patterns. Perhaps that explains our fascination with prime numbers which are uniquely without pattern. Prime numbers are among the most mysterious phenomena in mathematics." (Manindra Agrawal, 2003)

"[…] mathematicians are much more concerned for example with the structure behind something or with the whole edifice. Mathematicians are not really puzzlers. Those who really solve mathematical puzzles are the physicists. If you like to solve mathematical puzzles, you should not study mathematics but physics!" (Carlo Beenakker, [interview] 2006)

"A good problem solver must also be a conceptual mathematician, with a good intuitive grasp of structures. But structures remain tools for the problem solver, instead of the main object of study." (David Ruelle, "The Mathematician's Brain", 2007)

"A proof in mathematics is a psychological device for convincing some person, or some audience, that a certain mathematical assertion is true. The structure, and the language used, in formulating that proof will be a product of the person creating it; but it also must be tailored to the audience that will be receiving it and evaluating it. Thus there is no ‘unique’ or ‘right’ or ‘best’ proof of any given result. A proof is part of a situational ethic." (Steven G Krantz, "The Proof is in the Pudding", 2007)

"It thus stands to reason that mathematical structures have a dual origin: in part human, in part purely logical. Human mathematics requires short formulations (because of our poor memory, etc.). But mathematical logic dictates that theorems with a short formulation may have very long proofs, as shown by Gödel. Clearly you don't want to go through the same long proof again and again. You will try instead to use repeatedly the short theorem that you have obtained. And an important tool to obtain short formulations is to give short names to mathematical objects that occur repeatedly. These short names describe new concepts. So we see how concept creation arises in the practice of mathematics as a consequence of the inherent logic of the sub ject and of the nature of human mathematicians." (David Ruelle, "The Mathematician's Brain", 2007)

"Logic moves in one direction, the direction of clarity, coherence, and structure. Ambiguity moves in the other direction, that of fluidity, openness, and release. Mathematics moves back and forth between these two poles. Mathematics is not a fixed, static entity that can be structured definitively. It is dynamic, alive: its dynamism a function of the relationship between the two poles that have been described above. It is the interactions between these different aspects that give mathematics its power." (William Byers, "How Mathematicians Think", 2007)

"Mathematics as done by mathematicians is not just heaping up statements logically deduced from the axioms. Most such statements are rubbish, even if perfectly correct. A good mathematician will look for interesting results. These interesting results, or theorems, organize themselves into meaningful and natural structures, and one may say that the object of mathematics is to find and study these structures." (David Ruelle, "The Mathematician's Brain", 2007)

"The panoply of technical tools of mathematics reflects the inside structure of mathematics and is basically all we know about this inside structure, so that building a new theory may change the way we understand the structural relations of different parts of mathematics." (David Ruelle, "The Mathematician's Brain", 2007)

"We must admit, however, that our knowledge of the logical structure of mathematics and of the workings of the human mind remain quite limited, so that we have only partial answers to some questions, while others remain quite open." (David Ruelle, "The Mathematician's Brain", 2007)

"In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not." (Michael Atiyah, 2009)

"Philosophers have sometimes made a distinction between analytic and synthetic truths. Analytic truths are not verified by observation; true analytic statements are tautologies and are true by virtue of the definitions of their terms and their logical structure. Synthetic truths relate to the material world; the truth of synthetic statements depends on their correspondence to how physical reality works. Mathematics, according to this distinction, deals exclusively with analytic truths. Its statements are all tautologies and are (analytically) true by virtue of their adherence to formal rules of construction." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...