20 March 2022

On Physics XIII

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"The value of mathematical instruction as a preparation for those more difficult investigations, consists in the applicability not of its doctrines but of its methods. Mathematics will ever remain the past perfect type of the deductive method in general; and the applications of mathematics to the simpler branches of physics furnish the only school in which philosophers can effectually learn the most difficult and important of their art, the employment of the laws of simpler phenomena for explaining and predicting those of the more complex." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"So intimate is the union between Mathematics and Physics that probably by far the larger part of the accessions to our mathematical knowledge have been obtained by the efforts of mathematicians to solve the problems set to them by experiment, and to create for each successive class phenomena a new calculus or a new geometry, as the case might be, which might prove not wholly inadequate to the subtlety of nature. Sometimes the mathematician has been before the physicist, and it has happened that when some great and new question has occurred to the experimentalist or the observer, he has found in the armory of the mathematician the weapons which he needed ready made to his hand. But much oftener, the questions proposed by the physicist have transcended the utmost powers of the mathematics of the time, and a fresh mathematical creation has been needed to supply the logical instrument requisite to interpret the new enigma." (Henry J S Smith, Nature, Volume 8, 1873)

"That branch of physics which is at once the oldest and the simplest and which is therefore treated as introductory to other departments of this science, is concerned with the motions and equilibrium of masses. It bears the name of mechanics." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"In this sense the fundamental ideas of mechanics, together with the principles connecting them, represent the simplest image which physics can produce of things in the sensible world and the processes which occur in it. By varying the choice of the propositions which we take as fundamental, we can give various representations of the principles of mechanics. Hence we can thus obtain various images of things; and these images we can test and compare with each other in respect of permissibility, correctness, and appropriateness." (Heinrich Hertz, "The Principles of Mechanics Presented in a New Form", 1894)

"In addition to this it [mathematics] provides its disciples with pleasures similar to painting and music. They admire the delicate harmony of the numbers and the forms; they marvel when a new discovery opens up to them an unexpected vista; and does the joy that they feel not have an aesthetic character even if the senses are not involved at all? […] For this reason I do not hesitate to say that mathematics deserves to be cultivated for its own sake, and I mean the theories which cannot be applied to physics just as much as the others." (Henri Poincaré, 1897)

"Mathematicians will do well to observe that a reasonable acquaintance with theoretical physics at its present stage of development, to mention only such broad subjects as electricity, elastics, hydrodynamics, etc., is as much as most of us can keep permanently assimilated. It should also be remembered that the step from the formal elegance of theory to the brute arithmetic of the special case is always humiliating, and that this labor usually falls to the lot of the physicist." (Carl Barus, "The Mathematical Theory of the Top", 1898)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...