12 March 2022

On Smoothness III

"Similarly to the graphs of continuous functions, graphs of differentiable (smooth) functions which coincide in a neighborhood of a point P can branch off outside of the neighborhood. Because of this property, differentiable functions can represent smoothly changing natural phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"The property of smoothness includes the property of continuity. The notion of a topological space was born from the development of abstract algebra as a universal notion for the property of continuity." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To describe the property of smoothness, differentiable functions should be specified first. To do so, coordinates need to be introduced on the topological space. Those coordinates can be local coordinates such as the ones used by Gauss. Once coordinates are introduced around a point a in a topological space, differentiable functions near the point a are distinguished from the continuous functions in the region near a. If different coordinates are chosen, then a different set of differentiable functions is distinguished. In other words, the choice of local coordinates determines the notion of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Chaos itself is one form of a wide range of behavior that extends from simple regular order to systems of incredible complexity. And just as a smoothly operating machine can become chaotic when pushed too hard (chaos out of order), it also turns out that chaotic systems can give birth to regular, ordered behavior (order out of chaos). […] Chaos and chance don’t mean the absence of law and order, but rather the presence of order so complex that it lies beyond our abilities to grasp and describe it." (F David Peat, "From Certainty to Uncertainty", 2002)

"Today, the whole subject of geometry extends way beyond the world of right-angled triangles, circles and so on. There are even branches of the subject in which the ideas of length, angle and area don’t really feature at all. One of these is topology – a sort of rubber-sheet geometry - where a recurring question is whether some geometric object can be deformed ‘smoothly’ into another one." (David Acheson, "1089 and All That: A Journey into Mathematics", 2002)

"Do I claim that everything that is not smooth is fractal? That fractals suffice to solve every problem of science? Not in the least. What I'm asserting very strongly is that, when some real thing is found to be un-smooth, the next mathematical model to try is fractal or multi-fractal. A complicated phenomenon need not be fractal, but finding that a phenomenon is 'not even fractal' is bad news, because so far nobody has invested anywhere near my effort in identifying and creating new techniques valid beyond fractals. Since roughness is everywhere, fractals - although they do not apply to everything - are present everywhere. And very often the same techniques apply in areas that, by every other account except geometric structure, are separate." (Benoît Mandelbrot, "A Theory of Roughness", 2004) 

"But like every profound mathematical idea, the concept of a group reveals something about the nature of the world that lies beyond the mathematician’s symbols. […] There is […] a royal road between group theory and the most fundamental processes in nature. Some groups represent - they are reflections of - continuous rotations, things that whiz around and around smoothly." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Likewise, complex functions are actually better behaved than real functions, and the subject of complex analysis is known for its regularity and order, while real analysis is known for wildness and pathology A smooth complex function is predictable, in the sense that the values of the function in an arbitrarily small region determine its values everywhere. A smooth real function can be completely unpredictable for example, it can be constantly zero for a long interval, then smoothly change to the value 1." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...