"First, strange attractors look strange: they are not smooth curves or surfaces but have 'non-integer dimension' - or, as Benoit Mandelbrot puts it, they are fractal objects. Next, and more importantly, the motion on a strange attractor has sensitive dependence on initial condition. Finally, while strange attractors have only finite dimension, the time-frequency analysis reveals a continuum of frequencies." (David Ruelle, "Chance and Chaos", 1991)
"Topology is that branch of mathematics which is interested in the forms of things aside from their size and shape. Two things are said to be topologically equivalent if one can be deformed smoothly into the other without sticking, cutting, or puncturing it in any way. Thus an egg is equivalent to a sphere." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)
"The key to making discontinuity emerge from smoothness is the observation that the overall behavior of both static and dynamical systems is governed by what's happening near the critical points. These are the points at which the gradient of the function vanishes. Away from the critical points, the Implicit Function Theorem tells us that the behavior is boring and predictable, linear, in fact. So it's only at the critical points that the system has the possibility of breaking out of this mold to enter a new mode of operation. It's at the critical points that we have the opportunity to effect dramatic shifts in the system's behavior by 'nudging' lightly the system dynamics, one type of nudge leading to a limit cycle, another to a stable equilibrium, and yet a third type resulting in the system's moving into the domain of a 'strange attractor'. It's by these nudges in the equations of motion that the germ of the idea of discontinuity from smoothness blossoms forth into the modern theory of singularities, catastrophes and bifurcations, wherein we see how to make discontinuous outputs emerge from smooth inputs." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)
"Determination of transition functions makes it possible to restore the whole manifold if individual charts and coordinate maps are already given. Glueing functions may belong to different functional classes,which makes it possible to specify within a certain class of topological manifolds more narrow classes of smooth, analytic, etc. manifolds." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)
"Probably the most important reason that catastrophe theory received as much popular press as it did in the mid-1970s is not because of its unchallenged mathematical elegance, but because it appears to offer a coherent mathematical framework within which to talk about how discontinuous behaviors - stock market booms and busts or cellular differentiation, for instance - might emerge as the result of smooth changes in the inputs to a system, things like interest rates in a speculative market or the diffusion rate of chemicals in a developing embryo. These kinds of changes are often termed bifurcations, and playa central role in applied mathematical modeling. Catastrophe theory enables us to understand more clearly how - and why - they occur." (John L Casti, "Five Golden Rules", 1995)
"The goal of catastrophe theory is to classify smooth functions with degenerate critical points, just as Morse's Theorem gives us a complete classification for Morse functions. The difficulty, of course, is that there are a lot more ways for critical points to 'go bad' than there are for them to stay 'nice'. Thus, the classification problem is much harder for functions having degenerate critical points, and has not yet been fully carried out for all possible types of degeneracies. Fortunately, though, we can obtain a partial classification for those functions having critical points that are not too bad. And this classification turns out to be sufficient to apply the results to a wide range of phenomena like the predator-prey situation sketched above, in which 'jumps' in the system's biomass can occur when parameters describing the process change only slightly." (John L Casti, "Five Golden Rules", 1995)
"The reason catastrophe theory can tell us about such abrupt changes in a system's behavior is that we usually observe a dynamical system when it's at or near its steady-state, or equilibrium, position. And under various assumptions about the nature of the system's dynamical law of motion, the set of all possible equilibrium states is simply the set of critical points of a smooth function closely related to the system dynamics. When these critical points are nondegenerate, Morse's Theorem applies. But it is exactly when they become degenerate that the system can move sharply from one equilibrium position to another. The Thorn Classification Theorem tells when such shifts will occur and what direction they will take." (John L Casti, "Five Golden Rules", 1995)
"[…] continuity appears when we try to mathematically express continuously changing phenomena, and differentiability is the result of expressing smoothly changing phenomena." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
No comments:
Post a Comment