"[...] if the behavior points for the entire control surface are plotted and then connected, they form a smooth surface: the behavior surface. The surface has an overall slope from high values where rage predominates to low values in the region where fear is the prevailing state of mind, but the slope is not its most distinctive feature. Catastrophe theory reveals that in the middle of the surface there must be a smooth double fold, creating a pleat without creases, which grows narrower from the front of the surface to the back and eventually disappears in a singular point where the three sheets of the pleat come together. It is the pleat that gives the model its most interesting characteristics. All the points on the behavior surface represent the most probable behavior [...], with the exception of those on the middle sheet, which represent least probable behavior. Through catastrophe theory we can deduce the shape of the entire surface from the fact that the behavior is bimodal for some control points." (E Cristopher Zeeman, "Catastrophe Theory", Scientific American, 1976)
"'Catastrophe theory' denotes both a purely mathematical discipline describing certain singularities of smooth maps, as well as the concerted effort to apply these theorems to a wide variety of problems in fields ranging from linguistics and psychology to embryology, evolution, physics, and engineering." (Héctor J Sussmann & Raphael S Zahler, "Catastrophe Theory as Applied to the Social and Biological Sciences: A Critique" Synthese Vol. 37 (2), 1978)
"However, it turns out that a one-to-one mapping of the points in a square into the points on a line cannot be continuous. As we move smoothly along a curve through the square, the points on the line which represent the successive points on the square necessarily jump around erratically, not only for the mapping described above but for any one-to-one mapping whatever. Any one-to-one mapping of the square onto the line is discontinuous." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)
"Why is geometry often described as cold and dry? One reason lies in its inability to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in straight line. [...] Nature exhibits not simply a higher degree but an altogether different level of complexity." (Benoît B Mandelbrot, 1984)
"We intuitively know space to be a smooth continuum, an arena in which the fundamental particles move and interact. This assumption underpins our physical theories, and no experimental evidence has ever contradicted it. However, the possibility that space may not be smooth cannot be excluded." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"A regular homotopy of an immersion is a deformation through immersions for which the matrix of first partials itself varies smoothly." (George K Francis, "A Topological Picturebook", 1987)
"There are two topological reasons for adopting normal surfaces as the basic forms for drawings. A sufficiently small distortion of a stable mapping of a surface can be returned to its original shape by an isotopy of the ambient space. In other words, there is a one parameter family of coordinate changes which removes the distortion. Moreover, arbitrarily near any smooth mapping there is a stable approximation to it. A practical way to check that a certain surface feature is unstable is to remove it from the surface by means of a small perturbartions of its parametrization." (George K Francis, "A Topological Picturebook", 1987)
"When it comes to very highly organized systems, such as a living cell, the task of modeling by approximation to simple, continuous and smoothly varying quantities is hopeless. It is for this reason that attempts by sociologists and economists to imitate physicists and describe their subject matter by simple mathematical equations is rarely convincing." (Paul C W Davies, "The Cosmic Blueprint: New Discoveries in Nature’s Creative Ability to Order the Universe", 1987)
No comments:
Post a Comment