07 May 2019

On Beauty: Beauty and Mathematics (2000-2019)

"Where we find certainty and truth in mathematics we also find beauty. Great mathematics is characterized by its aesthetics. Mathematicians delight in the elegance, economy of means, and logical inevitability of proof. It is as if the great mathematical truths can be no other way. This light of logic is also reflected back to us in the underlying structures of the physical world through the mathematics of theoretical physics." (F David Peat, "From Certainty to Uncertainty", 2002)

“Pure mathematics was characterized by an obsession with proof, rigor, beauty, and elegance, and sought its foundations in the disembodied worlds of logic or intuition. Far from being coextensive with physics, pure mathematics could be ‘applied’ only after it had been made foundationally secure by the purists.” (Andrew Warwick, “Masters of Theory: Cambridge and the rise of mathematical physics”, 2003)

“Elegance and simplicity should remain important criteria in judging mathematics, but the applicability and consequences of a result are also important, and sometimes these criteria conflict. I believe that some fundamental theorems do not admit simple elegant treatments, and the proofs of such theorems may of necessity be long and complicated. Our standards of rigor and beauty must be sufficiently broad and realistic to allow us to accept and appreciate such results and their proofs. As mathematicians we will inevitably use such theorems when it is necessary in the practice our trade; our philosophy and aesthetics should reflect this reality.” (Michael Aschbacher, “Highly complex proofs and implications”, 2005)

"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)

"I think that the beauty of mathematics lies in uncovering the hidden simplicity and complexity that coexist in the rigid logical framework that the subject imposes." (David Ruelle, "The Mathematician's Brain", 2007)

"[...] it is while doing mathematical research that one truly comes to see the beauty of mathematics. It faces you in those moments when the underlying simplicity of a question appears and its meaningless complications can be forgotten. In those moments a piece of a colossal logical structure is illumi￾nated, and some of the meaning hidden in the nature of things is finally revealed." (David Ruelle, "The Mathematician's Brain", 2007)

“The immediate evidence from the natural world may seem to be chaotic and without any inner regularity, but mathematics reveals that under the surface the world of nature has an unexpected simplicity - an extraordinary beauty and order.” (William Byers, “How Mathematicians Think”, 2007)

“I enjoy mathematics so much because it has a strange kind of unearthly beauty. There is a strong feeling of pleasure, hard to describe, in thinking through an elegant proof, and even greater pleasure in discovering a proof not previously known.” (Martin Gardner, 2008)

“In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not.” (Michael Atiyah, 2009)

“Mathematics is the music of reason. To do mathematics is to engage in an act of discovery and conjecture, intuition and inspiration; to be in a state of confusion - not because it makes no sense to you, but because you gave it sense and you still don't understand what your creation is up to; to have a break-through idea; to be frustrated as an artist; to be awed and overwhelmed by an almost painful beauty; to be alive, damn it.” (Paul Lockhart, A Mathematician's Lament, 2009)

“Mathematicians seek a certain kind of beauty. Perhaps mathematical beauty is a constant - as far as the contents of mathematics are concerned - and yet the forms this beauty takes are certainly cultural. And while the history of mathematics surely is many stranded, one of its most important strands is formed by such cultural forms of mathematical beauty.” (Reviel Netz, “Ludic Proof: Greek Mathematics and the Alexandrian Aesthetic”, 2009)

“Mathematicians are sometimes described as living in an ideal world of beauty and harmony. Instead, our world is torn apart by inconsistencies, plagued by non sequiturs and, worst of all, made desolate and empty by missing links between words, and between symbols and their referents; we spend our lives patching and repairing it. Only when the last crack disappears are we rewarded by brief moments of harmony and joy.” (Alexandre V Borovik, “Mathematics under the Microscope: Notes on Cognitive Aspects of Mathematical Practice”, 2009)

“What is the basis of this interest in beauty? Is it the same in both mathematics and science? Is it rational, in either case, to expect or demand that the products of the discipline satisfy such a criterion? Is there an underlying assumption that the proper business of mathematics and science is to discover what can be discovered about reality and that truth - mathematical and physical - when seen as clearly as possible, must be beautiful? If the demand for beauty stems from some such assumption, is the assumption itself an article of blind faith? If such an assumption is not its basis, what is?” (Raymond S Nickerson, “Mathematical Reasoning:  Patterns, Problems, Conjectures, and Proofs”, 2010)

"You do not study mathematics because it helps you build a bridge. You study mathematics because it is the poetry of the universe. Its beauty transcends mere things." (Jonathan D Farley, 2011)

"Mathematics leads to simple and beautiful conclusions by ignoring and idealizing various factors in order to abstract. However, reality is both more complex and discrete, and in many cases mathematical conclusions are only approximately valid. There is also the risk that the assumptions used for valuation models differ from the market (model risk), as well as issues with the reliability of the parameters used in the model (parameter risk)." (Kenichi Watanabe, "The Role of Mathematics in Finance: Applied Mathematics and Risk", 2013)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...