29 January 2022

On Art: Poetry and Mathematics V

"The true mathematician is always a great deal of an artist, an architect, yes, of a poet. Beyond the real world, though perceptibly connected with it, mathematicians have created an ideal world which they attempt to develop into the most perfect of all worlds, and which is being explored in every direction. None has the faintest conception of this world except him who knows it; only presumptuous ignorance can assert that the mathematician moves in a narrow circle. The truth which he seeks is, to be sure, broadly considered, neither more nor less than consistency; but does not his mastership show, indeed, in this very limitation? To solve questions of this kind he passes unenviously over others." (Alfred Pringsheim, Jaresberichte der Deutschen Mathematiker Vereinigung Vol 13, 1904)

"Poetry is a sort of inspired mathematics, which gives us equations, not for abstract figures, triangles, squares, and the like, but for the human emotions. If one has a mind which inclines to magic rather than science, one will prefer to speak of these equations as spells or incantations; it sounds more arcane, mysterious, recondite. " (Ezra Pound, "The Spirit of Romance", 1910)

"[...] mathematics and poetry move together between two extremes of mysticism, the mysticism of the commonplace where ideas illuminate and create facts, and the mysticism of the extraordinary where God, the Infinite, the Real, poses the riddles of desire and disappointment, sin and salvation, effort and failure, question and paradoxical answer [...]" (Scott Buchanan, "Poetry and Mathematics", 1929)

"[…] the major mathematical research acquires an organization and orientation similar to the poetical function which, adjusting by means of metaphor disjunctive elements, displays a structure identical to the sensitive universe. Similarly, by means of its axiomatic or theoretical foundation, mathematics assimilates various doctrines and serves the instructive purpose, the one set up by the unifying moral universe of concepts." (Dan Barbilian, "The Autobiography of the Scientist", 1940)

"Mathematics is one component of any plan for liberal education. Mother of all the sciences, it is a builder of the imagination, a weaver of patterns of sheer thought, an intuitive dreamer, a poet. The study of mathematics cannot be replaced by any other activity that will train and develop man's purely logical faculties to the same level of rationality. Through countless dimensions, riding high the winds of intellectual adventure and filled with the zest of discovery, the mathematician tracks the heavens for harmony and eternal verity. There is not wholly unexpected surprise, but surprise nevertheless, that mathematics has direct application to the physical world about us. For mathematics, in a wilderness of tragedy and change, is a creature of the mind, born to the cry of humanity in search of an invariant reality, immutable in substance, unalterable with time. Mathematics is an infinity of flexibles forcing pure thought into a cosmos. It is an arc of austerity cutting realms of reason with geodesic grandeur. Mathematics is crystallized clarity, precision personified, beauty distilled and rigorously sublimated. The life of the spirit is a life of thought; the ideal of thought is truth; everlasting truth is the goal of mathematics." (Cletus O Oakley, "Mathematics", The American Mathematical Monthly, 1949)

"The structures with which mathematics deals are more like lace, the leaves of trees, and the play of light and shadow on a human face, than they are like buildings and machines, the least of their representatives. The best proofs in mathematics are short and crisp like epigrams, and the longest have swings and rhythms that are like music. The structures of mathematics and the propositions about them are ways for the imagination to travel and the wings, or legs, or vehicles to take you where you want to go." (Scott Buchanan, "Poetry and Mathematics", 1975)

"The theory of number is the epipoem of mathematics." (Scott Buchanan, "Poetry and Mathematics", 1975)

"To survive, mathematical ideas must be beautiful, they must be seductive, and they must be illuminating, they must help us to understand, they must inspire us. […] Part of that beauty, an essential part, is the clarity and sharpness that the mathematical way of thinking about things promotes and achieves. Yes, there are also mystic and poetic ways of relating to the world, and to create a new math theory, or to discover new mathematics, you have to feel comfortable with vague, unformed, embryonic ideas, even as you try to sharpen them."  (Gregory Chaitin, "Meta Math: The Quest for Omega", 2005)

"The relationship of math to the real world has been a conundrum for philosophers for centuries, but it is also an inspiration for poets. The patterns of mathematics inhabit a liminal space - they were initially derived from the natural world and yet seem to exist in a separate, self-contained system standing apart from that world. This makes them a source of potential metaphor: mapping back and forth between the world of personal experience and the world of mathematical patterns opens the door to novel connections." (Alice Major, "Mapping from e to Metaphor", 2018)

Previous Post << || >> Next Post

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...