29 January 2022

On Models (1900-1929)

"Confronted with the mystery of the Universe, we are driven to ask if the model our minds have framed at all corresponds with the reality; if, indeed, there be any reality behind the image." (Sir William Cecil Dampier, "The Recent Development of Physical Science", 1904)

"The different sciences are not even parts of a whole; they are but different aspects of a whole, which essentially has nothing in it corresponding to the divisions we make; they are, so to speak, sections of our model of Nature in certain arbitrary planes, cut in directions to suit our convenience." (Sir William Cecil Dampier, "The Recent Development of Physical Science", 1904)

"We can only study Nature through our senses – that is […] we can only study the model of Nature that our senses enable our minds to construct; we cannot decide whether that model, consistent though it be, represents truly the real structure of Nature; whether, indeed, there be any Nature as an ultimate reality behind its phenomena." (Sir William C Dampier, "The Recent Development of Physical Science", 1904)

"A symbolical representation of a method of calculation has the same significance for a mathematician as a model or a visualisable working hypothesis has for a physicist. The symbol, the model, the hypothesis runs parallel with the thing to be represented. But the parallelism may extend farther, or be extended farther, than was originally intended on the adoption of the symbol. Since the thing represented and the device representing are after all different, what would be concealed in the one is apparent in the other." (Ernst Mach, "Space and Geometry: In the Light of physiological, phycological and physical inquiry", 1906) 

“We should always aim toward the economy of thought. It is not enough to give models for imitation. It must be possible to pass beyond these models and, in place of repeating their reasoning at length each time, to sum this in a few words.” (Jules H Poincaré, 1909)

"It seems rather futile, if such be the normal history of hypothetical models, to inflict on us the labor of learning abstruse hypotheses which continually revamp old metaphysical terms and merely dress them up in new transcendental symbols. It is a valuable exercise to strip hypotheses of their technical phraseology; to change those words which deceive our minds into believing that a clear idea has been conveyed, when, in fact, they have merely been wrenched from any real significance." (Louis T More," The Limitations of Science", 1915)

"Our model of Nature […] should be like an engine with movable parts. We need not fix the position of any one lever; that is to be adjusted from time to time as the latest observations indicate. The aim of the theorist is to know the train of wheels which the lever sets in motion - that binding of the parts which is the soul of the engine." (Sir Arthur S Eddington, "The Internal Constitution of Stars", Nature Vol. 106 (2603), 1920)

"[…] while the building of Nature is growing spontaneously from within, the model of it, which we seek to construct in our descriptive science, can only be constructed by means of scaffolding from without, a scaffolding of hypotheses. While in the real building all is continuous, in our model there are detached parts which must be connected with the rest by temporary ladders and passages, or which must be supported till we can see how to fill in the understructure. To give the hypotheses equal validity with facts is to confuse the temporary scaffolding with the building itself." (John H Poynting, "Collected Scientific Papers", 1920)

"As we continue the great adventure of scientific exploration our models must often be recast. New laws and postulates will be required, while those that we already have must be broadened, extended and generalized in ways that we are now hardly able to surmise." (Gilbert Newton Lewis, "The Anatomy of Science", 1926)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...