"There is divinity in odd numbers, either in nativity, chance, or death." (William Shakespeare, "The Merry Wives of Windsor", 1602)
"Seeing there is nothing that is so troublesome to mathematical practice, nor that doth more molest and hinder calculators, than the multiplications, divisions, square and cubical extractions of great numbers. [...] I began therefore to consider in my mind by what certain and ready art I might remove those hindrances." (John Napier, "Mirifici logarithmorum canonis descriptio", 1614)
"Thus we can give three names to the other solutions, seeing that there are some which are greater than nothing, other less than nothing, and other enveloped, as those which have like √- or √-3 or other similar numbers." (Albert Girard, "L'Invention nouvelle de l'Algébre", 1629)
"The length of strings is not the direct and immediate reason behind the forms [ratios] of musical intervals, nor is their tension, nor their thickness, but rather, the ratios of the numbers of vibrations and impacts of air waves that go to strike our eardrum." (Galileo Galilei, "Two New Sciences", 1638)
"[…] I think I am able to prove that there are no even numbers which are perfect apart from those of Euclid; and that there are no odd perfect numbers, unless they are composed of a single prime number, multiplied by a square whose root is composed of several other prime number. But I can see nothing which would prevent one from finding numbers of this sort. For example, if 22021 were prime, in multiplying it by 9018009 which is a square whose root is composed of the prime numbers 3, 7, 11, 13, one would have 198585576189, which would be a perfect number. But, whatever method one might use, it would require a great deal of time to look for these numbers […]" (René Descartes, [a letter to Marin Mersenne] 1638)
"What is big is easy to perceive: what is small is difficult to perceive. In short, it is difficult for large numbers of men to change position, so their movements can be easily predicted. An individual can easily change his mind, so his movements are difficult to predict."(Miyamoto Musashi, "The Book of Five Rings", 1645)
"There is scarcely any one who states purely arithmetical questions, scarcely any who understands them. Is this not because arithmetic has been treated up to this time geometrically rather than arithmetically? This certainly is indicated by many works ancient and modern. Diophantus himself also indicates this. But he has freed himself from geometry a little more than others have, in that he limits his analysis to rational numbers only; nevertheless the Zetcica of Vieta, in which the methods of Diophantus are extended to continuous magnitude and therefore to geometry, witness the insufficient separation of arithmetic from geometry. Now arithmetic has a special domain of its own, the theory of numbers. This was touched upon but only to a slight degree by Euclid in his Elements, and by those who followed him it has not been sufficiently extended, unless perchance it lies hid in those books of Diophantus which the ravages of time have destroyed. Arithmeticians have now to develop or restore it. To these, that I may lead the way, I propose this theorem to be proved or problem to be solved. If they succeed in discovering the proof or solution, they will acknowledge that questions of this kind are not inferior to the more celebrated ones from geometry either for depth or difficulty or method of proof: Given any number which is not a square, there also exists an infinite number of squares such that when multiplied into the given number and unity is added to the product, the result is a square." (Pierre de Fermat, [Letter to Frénicle] 1657)
"[…] the knowledge we have of the Mathematicks, hath no reason to elate us; since by them we know but numbers, and figures, creatures of our own, and are yet ignorant of our Maker’s." (Joseph Glanvill, "The Vanity of Dogmatizing", 1661)
"Measure, time and number are nothing but modes of thought or rather of imagination." (Baruch Spinoza, [Letter to Ludvicus Meyer] 1663)
"For any number there exists a corresponding even number which is its double. Hence the number of all numbers is not greater than the number of even numbers, that is, the whole is not greater than the part." (Gottfried W Leibniz, "De Arte Combinatoria", 1666)
"We know that there is an infinite, and we know not its nature. As we know it to be false that numbers are finite, it is therefore true that there is a numerical infinity. But we know not of what kind; it is untrue that it is even, untrue that it is odd; for the addition of a unit does not change its nature; yet it is a number, and every number is odd or even (this certainly holds of every finite number). Thus we may quite well know that there is a God without knowing what He is." (Blaise Pascal, "Pensées", 1670)
No comments:
Post a Comment