16 January 2022

Architecture and Mathematics

"The arts which are useful, and absolutely necessary to the architect are painting and mathematics." (Leon Battista Alberti, "Treatise on Architecture", 1452)

"For many parts of Nature can neither be invented with sufficient subtlety, nor demonstrated with sufficient perspicuity, nor accommodated to use with sufficient dexterity, without the aid and intervention of Mathematic: of which sort are Perspective, Music, Astronomy, cosmography, Architecture, Machinery, and some others." (Sir Francis Bacon, "De Augmentis"Bk. 3 ["The Advancement of Learning"], 1605)

"The true mathematician is always a great deal of an artist, an architect, yes, of a poet. Beyond the real world, though perceptibly connected with it, mathematicians have created an ideal world which they attempt to develop into the most perfect of all worlds, and which is being explored in every direction. None has the faintest conception of this world except him who knows it; only presumptuous ignorance can assert that the mathematician moves in a narrow circle. The truth which he seeks is, to be sure, broadly considered, neither more nor less than consistency; but does not his mastership show, indeed, in this very limitation? To solve questions of this kind he passes unenviously over others." (Alfred Pringsheim, Jaresberichte der Deutschen Mathematiker Vereinigung Vol 13, 1904)

"Mathematics is no more the art of reckoning and computation than architecture is the art of making bricks or hewing wood, no more than painting is the art of mixing colors on a palette, no more than the science of geology is the art of breaking rocks, or the science of anatomy the art of butchering." (Cassius J Keyser, "Lectures on Science, Philosophy and Art", 1908)

"Architecture is geometry made visible in the same sense that music is number made audible." (Claude F Bragdon, "The Beautiful Necessity: Seven Essays on Theosophy and Architecture", 1910)

"Architecture is the masterly, correct and magnificent play of masses brought together in light. Our eyes are made to see forms in light; light and shade reveal these forms; cubes, cones, spheres, cylinders or pyramids are the great primary forms which light reveals to advantage; the image of these is distinct and tangible within us without ambiguity. It is for this reason that these are beautiful forms, the most beautiful forms. Everybody is agreed to that, the child, the savage and the metaphysician." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"One expects a mathematical theorem or a mathematical theory not only to describe and to classify in a simple and elegant way numerous and a priori disparate special cases. One also expects ‘elegance’ in its ‘architectural’ structural makeup." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I (1), 1947]) 

"Mathematicians who build new spaces and physicists who find them in the universe can profit from the study of pictorial and architectural spaces conceived and built by men of art." (György Kepes, "The New Landscape In Art and Science", 1956)

"The bottom line for mathematicians is that the architecture has to be right. In all the mathematics that I did, the essential point was to find the right architecture. It's like building a bridge. Once the main lines of the structure are right, then the details miraculously fit. The problem is the overall design." (Freeman J Dyson, [interview] 1994)

"In mathematics, beauty is a very important ingredient. Beauty exists in mathematics as in architecture and other things. It is a difficult thing to define but it is something you recognise when you see it. It certainly has to have elegance, simplicity, structure and form. All sorts of things make up real beauty. There are many different kinds of beauty and the same is true of mathematical theorems. Beauty is an important criterion in mathematics because basically there is a lot of choice in what you can do in mathematics and science. It determines what you regard as important and what is not." (Michael Atiyah, 2009)

"Architecture is akin to music in that both should be based on the symmetry of mathematics." (Frank L Wright)

"Music is architecture translated or transposed from space into time; for in music, besides the deepest feeling, there reigns also a rigorous mathematical intelligence." (Georg W F Hegel)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...