"If one intends to base arithmetic on the theory of natural numbers as finite cardinals, one has to deal mainly with the definition of finite set; for the cardinal is, according to its nature, a property of a set, and any proposition about finite cardinals can always be expressed as a proposition about finite sets. In the following I will try to deduce the most important property of natural numbers, namely the principle of complete induction, from a definition of finite set which is as simple as possible, at the same time showing that the different definitions [of finite set] given so far are equivalent to the one given here." (Ernst Zermelo, "Ueber die Grundlagen der Arithmetik", Atti del IV Congresso Internazionale dei Matematici, 1908)
[…] theory of numbers lies remote from those who are indifferent; they show little interest in its development, indeed they positively avoid it. [..] the pure theory of numbers is an extremely abstract thing, and one does not often find the gift of ability to understand with pleasure anything so abstract. […] I believe that the theory of numbers would be made more accessible, and would awaken more general interest, if it mere presented in connection with graphical elements and appropriate figures.” (Felix Klein, “Elementary Mathematics from an Advanced Standpoint”, 1908)
"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré, "Annual Report of the Board of Regents of the Smithsonian Institution", 1909)
"The theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found it in it a mysterious attraction impossible to resist." (Godfrey H Hardy, 1915)
"The theory of numbers is unrivalled for the number and variety of its results and for the beauty and wealth of its demonstrations. The Higher Arithmetic seems to include most of the romance of mathematics." (Louis Mordell, 1917)
"The function of a mathematician, then, is simply to observe the facts about his own intricate system of reality, that astonishingly beautiful complex of logical relations which forms the subject-matter of his science, as if he were an explorer looking at a distant range of mountains, and to record the results of his observations in a series of maps, each of which is a branch of pure mathematics. […] Among them there perhaps none quite so fascinating, with quite the astonishing contrasts of sharp outline and shade, as that which constitutes the theory of numbers." (Godfrey H. Hardy, "The Theory of Numbers", Nature 1922)
No comments:
Post a Comment