02 November 2019

On Models (1960-1969)

"[a pictorial representation] is not a faithful record of a visual experience, but the faithful construction of a relational model […] Such a model can be constructed to any required degree of accuracy . What is decisive here is clearly the word 'required'. The form of a representation cannot be divorced from its purpose and the requirements of the society in which the given visual language gains currency." (Ernst H Gombrich," Art and illusion", 1960) 

"In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics." (Marshall Stone, cca 1960) 

"For a certain domain of facts let no theory be known. If we replace our study of this domain by the study of another set of facts for which a theory is well known, and that has certain important characteristics in common with the field under investigation, then we use a model to develop our knowledge from a zero (or near zero) starting point." (Leo Apostel, "Towards the formal study of models in the non-formal sciences", Synthese, Vol. 12 (2-3), 1960)

"It is of our very nature to see the universe as a place that we can talk about. In particular, you will remember, the brain tends to compute by organizing all of its input into certain general patterns. It is natural for us, therefore, to try to make these grand abstractions, to seek for one formula, one model, one God, around which we can organize all our communication and the whole business of living." (John Z Young, "Doubt and Certainty in Science: A Biologist’s Reflections on the Brain", 1960)

"[…] no models are [true] = not even the Newtonian laws. When you construct a model you leave out all the details which you, with the knowledge at your disposal, consider inessential. […] Models should not be true, but it is important that they are applicable, and whether they are applicable for any given purpose must of course be investigated. This also means that a model is never accepted finally, only on trial." (Georg Rasch, "Probabilistic Models for Some Intelligence and Attainment Tests", 1960)

"Science manipulates things and gives up living in them. It makes its own limited models of things; operating upon these indices or variables to effect whatever transformations are permitted by their definition, it comes face to face with the real world only at rare intervals. Science is and always will be that admirably active, ingenious, and bold way of thinking whose fundamental bias is to treat everything as though it were an object-in-general - as though it meant nothing to us and yet was predestined for our own use." (Maurice Merleau-Ponty, "L'Œil et l'Esprit", 1960)

"Scientific research utilises models in many places, as instruments in the service of many different needs. The first requirement a study of model-building in science should satisfy is not to neglect this undeniable diversity (as has sometimes been done), and, when recognising this multiplicity, to realise that the same instrument cannot perform all those functions (often the multiplicity of function is recognised but either not to a full extent, or not with respect to the difference of structure it implies)," (Leo Apostel, "Towards the formal study of models in the non-formal sciences", Synthese, Vol. 12 (2-3), 1960)

"The attempt to characterize exactly models of an empirical theory almost inevitably yields a more precise and clearer understanding of the exact character of a theory. The emptiness and shallowness of many classical theories in the social sciences is well brought out by the attempt to formulate in any exact fashion what constitutes a model of the theory. The kind of theory which mainly consists of insightful remarks and heuristic slogans will not be amenable to this treatment. The effort to make it exact will at the same time reveal the weakness of the theory." (Patrick Suppes," A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences", Synthese  Vol. 12 (2/3), 1960)

“Model-making, the imaginative and logical steps which precede the experiment, may be judged the most valuable part of scientific method because skill and insight in these matters are rare. Without them we do not know what experiment to do. But it is the experiment which provides the raw material for scientific theory. Scientific theory cannot be built directly from the conclusions of conceptual models.” (Herbert G Andrewartha, “Introduction to the Study of Animal Population”, 1961) 

"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple." (John von Neumann, "Method in the physical sciences", 1961)

"[…] the progress of science is a little like making a jig-saw puzzle. One makes collections of pieces which certainly fit together, though at first it is not clear where each group should come in the picture as a whole, and if at first one makes a mistake in placing it, this can be corrected later without dismantling the whole group." (Sir George Thomson, "The Inspiration of Science", 1961)

"Every metaphor is the tip of a submerged model. […] Use of theoretical models resembles the use of metaphors in requiring analogical transfer of a vocabulary. Metaphor and model-making reveal new relationships; both are attempts to pour new content into old bottles." (Max Black," Models and Metaphors", 1962)

"Scientists work from models acquired through education and through subsequent exposure to the literature often without quite knowing or needing to know what characteristics have given these models the status of community paradigms." (Thomas Kuhn, The Structure of Scientific Revolutions, 1962)

“[…] the intrinsic value of a small-scale model is that it compensates for the renunciation of sensible dimensions by the acquisition of intelligible dimensions.” (Claude Levi- Strauss, “The Savage Mind”, 1962)

"A model is essentially a calculating engine designed to produce some output for a given input." (Richard C Lewontin, "Models, Mathematics and Metaphors", Synthese, Vol. 15, No. 2, 1963)

"If our model is to be at all realistic, it will also need to be rather complex, It will in fact be too complex for easy handling by the traditional analytic measures, even after suitable simplifications." (Charles P Bonini, "Simulation of Information and Decision System in the Firm" , 1963)

"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)

"After all, without the experiment - either a real one or a mathematical model - there would be no reason for a theory of probability." (Thornton C Fry, "Probability and Its Engineering Uses" , 1965)

"Celestial navigation is based on the premise that the Earth is the center of the universe. The premise is wrong, but the navigation works. An incorrect model can be a useful tool." (R A J Phillips, "A Day in the Life of Kelvin Throop", Analog Science Fiction and Science Fact, Vol. 73 No. 5, 1964)

"Science begins with the world we have to live in, accepting its data and trying to explain its laws. From there, it moves toward the imagination: it becomes a mental construct, a model of a possible way of interpreting experience." (Northrop Frye, "The Educated Imagination", 1964)

"A more problematic example is the parallel between the increasingly abstract and insubstantial picture of the physical universe which modern physics has given us and the popularity of abstract and non-representational forms of art and poetry. In each case the representation of reality is increasingly removed from the picture which is immediately presented to us by our senses." (Harvey Brooks, "Scientific Concepts and Cultural Change", 1965)

"The usefulness of the models in constructing a testable theory of the process is severely limited by the quickly increasing number of parameters which must be estimated in order to compare the predictions of the models with empirical results" (Anatol Rapoport, "Prisoner's Dilemma: A study in conflict and cooperation", 1965)

"A model is a useful (and often indispensable) framework on which to organize our knowledge about a phenomenon. […] It must not be overlooked that the quantitative consequences of any model can be no more reliable than the a priori agreement between the assumptions of the model and the known facts about the real phenomenon. When the model is known to diverge significantly from the facts, it is self-deceiving to claim quantitative usefulness for it by appeal to agreement between a prediction of the model and observation." (John R Philip, 1966)

"It is of course desirable to work with manageable models which maximize generality, realism, and precision toward the overlapping but not identical goals of understanding, predicting, and modifying nature. But this cannot be done." (Richard Levins, "The strategy of model building in population biology", American Scientist Vol. 54 (4), 1966) 

"Science has assumed such an important role in determining the parameters of national and international life, that participation in national decisions by people whose world picture has been affected by the study and practice of science (even if this picture has its own bias), is indispensable for many major political decisions - to correct the bias of the more traditional molders of national decisions, such as men with legal training." (Eugene Rabinowitch, "Open Season on Scientists", The New Republic, 1966)

"The most natural way to give an independence proof is to establish a model with the required properties. This is not the only way to proceed since one can attempt to deal directly and analyze the structure of proofs. However, such an approach to set theoretic questions is unnatural since all our intuition come from our belief in the natural, almost physical model of the mathematical universe." (Paul J Cohen, "Set Theory and the Continuum Hypothesis", 1966)

"The validation of a model is not that it is 'true' but that it generates good testable hypotheses relevant to important problems.” (Richard Levins, "The Strategy of Model Building in Population Biology”, 1966)

“[…] mathematics is not portraying laws inherent in the design of the universe but is merely providing man-made schemes or models which we can use to deduce conclusions about our world only to the extent that the model is a good idealization.” (Morris Kline, “Mathematics for the Nonmathematician”, 1967)

"Any theory starts off with an observer or experimenter. He has in mind a collection of abstract models with predictive capabilities. Using various criteria of relevance, he selects one of them. In order to actually make predictions, this model must be interpreted and identified with a real assembly to form a theory. The interpretation may be prescriptive or predictive, as when the model is used like a blueprint for designing a machine and predicting its states. On the other hand, it may be descriptive and predictive as it is when the model is used to explain and predict the behaviour of a given organism." (Gordon Pask, "The meaning of cybernetics in the behavioural sciences", 1969)

"Models are, for the most part, caricatures of reality, but if they are good, then like good caricatures, they portray, though perhaps in a distorted manner, some of the features of the real world." (Mark Kac, "Some mathematical models in science" Science, Vol. 166 (3906), 1969)

"Models constitute a framework or a skeleton and the flesh and blood will have to be added by a lot of common sense and knowledge of details."(Jan Tinbergen, "The Use of Models: Experience," 1969) 

"The main role of models is not so much to explain and predict - though ultimately these are the main functions of science - as to polarize thinking and to pose sharp questions. Above all, they are fun to invent and to play with, and they have a peculiar life of their own. The 'survival of the fittest' applies to models even more than it does to living creatures. They should not, however, be allowed to multiply indiscriminately without real necessity or real purpose." (Mark Kac, "Some mathematical models in science" Science, Vol. 166 (3906), 1969)

"The laws of nature 'discovered' by science are merely mathematical or mechanical models that describe how nature behaves, not why, nor what nature 'actually' is. Science strives to find representations that accurately describe nature, not absolute truths. This fact distinguishes science from religion." (George O Abell, "Exploration of the Universe", 1969)

"The advantages of models are, on one hand, that they force us to present a 'complete' theory by which I mean a theory taking into account all relevant phenomena and relations and, on the other hand, the confrontation with observation, that is, reality."(Jan Tinbergen, "The Use of Models: Experience," 1969)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...