"You cannot learn, through common sense, how things are you can only discover where they fit into the existing scheme of things." (Stuart Hall, 1977)
"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces. " (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)
"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)
"It is hard for us today to assimilate all the new ideas that are being suggested in response to the new information we have. We must remember that our picture of the universe is based not only on our scientific knowledge but also on our culture and our philosophy. What new discoveries lie ahead no one can say. There may well be civilizations in other parts of our galaxy or in other galaxies that have already accomplished much of what lies ahead for mankind. Others may just be beginning. The universe clearly presents an unending challenge." (Necia H Apfel & J Allen Hynek, "Architecture of the Universe", 1979)
"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)
"The joy of suddenly learning a former secret and the joy of suddenly discovering a hitherto unknown truth are the same to me - both have the flash of enlightenment, the almost incredibly enhanced vision, and the ecstasy and euphoria of released tension." (Paul R Halmos, "I Want to Be a Mathematician", 1985)
"[…] there is an external world which can in principle be exhaustively described in scientific language. The scientist, as both observer and language-user, can capture the external facts of the world in propositions that are true if they correspond to the facts and false if they do not. Science is ideally a linguistic system in which true propositions are in one-to-one relation to facts, including facts that are not directly observed because they involve hidden entities or properties, or past events or far distant events. These hidden events are described in theories, and theories can be inferred from observation, that is, the hidden explanatory mechanism of the world can be discovered from what is open to observation. Man as scientist is regarded as standing apart from the world and able to experiment and theorize about it objectively and dispassionately." (Mary B Hesse, "Revolutions and Reconstructions in the Philosophy of Science", 1980)
"One cannot ‘invent’ the structure of an object. The most we can do is to patiently bring it to the light of day, with humility - in making it known, it is ‘discovered’. If there is some sort of inventiveness in this work, and if it happens that we find ourselves the maker or indefatigable builder, we are in no sense ‘making’ or ’building’ these ‘structures’. They have not waited for us to find them in order to exist, exactly as they are! But it is in order to express, as faithfully as possible, the things that we have been detecting or discovering, the reticent structure which we are trying to grasp at, perhaps with a language no better than babbling. Thereby are we constantly driven to ‘invent’ the language most appropriate to express, with increasing refinement, the intimate structure of the mathematical object, and to ‘construct’ with the help of this language, bit by bit, those ‘theories’ which claim to give a fair account of what has been apprehended and seen. There is a continual coming and going, uninterrupted, between the apprehension of things, and the means of expressing them by a language in constant state improvement [...].The sole thing that constitutes the true inventiveness and imagination of the researcher is the quality of his attention as he listens to the voices of things." (Alexander Grothendieck, "Récoltes et semailles –Rélexions et témoignage sur un passé de mathématicien", 1985)
"Ultimately, discovery and invention are both problems of classification, and classification is fundamentally a problem of finding sameness. When we classify, we seek to group things that have a common structure or exhibit a common behavior." (Grady Booch, "Object-oriented design: With Applications", 1991)
"In brief, the way we do mathematics is human, very much so. But mathematicians have no doubt that there is a mathematical reality beyond our puny existence. We discover mathematical truth, we do not create it. We ask ourselves what seems to be a natural question and start working on it, and not uncommonly we find the solution (or someone else does). And we know that the answer could not have been different." (David Ruelle, "Chance and Chaos", 1991)
"As a result, surprisingly enough, scientific advance rarely comes solely through the accumulation of new facts. It comes most often through the construction of new theoretical frameworks. [..] To understand scientific development, it is not enough merely to chronicle new discoveries and inventions. We must also trace the succession of worldviews" (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)
"Metaphors can have profound significance because, as images or figures, they allow the mind to grasp or discover unsuspected ideal and material relationships between objects." (Giuseppe Del Re, "Cosmic Dance", 1999)
"As a result, surprisingly enough, scientific advance rarely comes solely through the accumulation of new facts. It comes most often through the construction of new theoretical frameworks. [..] To understand scientific development, it is not enough merely to chronicle new discoveries and inventions. We must also trace the succession of worldviews" (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)
"Metaphors can have profound significance because, as images or figures, they allow the mind to grasp or discover unsuspected ideal and material relationships between objects." (Giuseppe Del Re, "Cosmic Dance", 1999)
No comments:
Post a Comment