12 January 2020

Carlos Gershenson - Collected Quotes

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"Self-organization can be seen as a spontaneous coordination of the interactions between the components of the system, so as to maximize their synergy. This requires the propagation and processing of information, as different components perceive different aspects of the situation, while their shared goal requires this information to be integrated. The resulting process is characterized by distributed cognition: different components participate in different ways to the overall gathering and processing of information, thus collectively solving the problems posed by any perceived deviation between the present situation and the desired situation." (Carlos Gershenson & Francis Heylighen, "How can we think the complex?", 2004)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

[synergy:] "Measure describing how one agent or system increases the satisfaction of other agents or systems." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat (“dissipation”). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Thermodynamics is about those properties of systems that are true independent of their mechanism. This is why there is a fundamental asymmetry in the relationship between mechanistic descriptions of systems and thermodynamic descriptions of systems. From the mechanistic information we can deduce all the thermodynamic properties of that system. However, given only thermodynamic information we can deduce nothing about mechanism. This is in spite of the fact that thermodynamics makes it possible for us to reject classes of models such as perpetual motion machines." (Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"To develop a Control, the designer should find aspect systems, subsystems, or constraints that will prevent the negative interferences between elements (friction) and promote positive interferences (synergy). In other words, the designer should search for ways of minimizing frictions that will result in maximization of the global satisfaction" (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose."(Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"We have to be aware that probabilities are relative to a level of observation, and that what is most probable at one level is not necessarily so at another. Moreover, a state is defined by an observer, being the conjunction of the values for all the variables or attributes that the observer considers relevant for the phenomenon being modeled. Therefore, we can have different degrees of order or ‘entropies’ for different models or levels of observation of the same entity."(Carlos Gershenson, “Design and Control of Self-organizing Systems”, 2007)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"Complexity has shown that reductionism is limited, in the sense that emergent properties cannot be reduced. In other words, the properties at a given scale cannot be always described completely in terms of properties at a lower scale. This has led people to debate on the reality of phenomena at different scales." (Carlos Gershenson, "Complexity", 2011)

"It should also be noted that the novel information generated by interactions in complex systems limits their predictability. Without randomness, complexity implies a particular non-determinism characterized by computational irreducibility. In other words, complex phenomena cannot be known a priori." (Carlos Gershenson, "Complexity", 2011)

"The difference between adaptation and prediction is that the latter tries to act before a perturbation affects the expected behavior of a system. Certainly, it is desirable to predict perturbations, since these can affect negatively or even destroy a system. However, as it has been shown, it is not possible to predict all future interactions of a system. This is why it becomes necessary to build systems that are able to adapt, since there will be unexpected situations. An adaptive system will be able to respond to the unexpected, to a certain degree, without the need of human intervention." (Carlos Gershenson, "Understanding Complex Systems", 2011)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...