24 January 2020

On Abstraction (1940-1949)

"Abstractness, sometimes hurled as a reproach at mathematics, is its chief glory and its surest title to practical usefulness. It is also the source of such beauty as may spring from mathematics." (Eric T Bell, "The Development of Mathematics", 1940)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"[…] there is probably less difference between the positions of a mathematician and of a physicist than is generally supposed, [...] the mathematician is in much more direct contact with reality. This may seem a paradox, since it is the physicist who deals with the subject-matter usually described as 'real', but [...] [a physicist] is trying to correlate the incoherent body of crude fact confronting him with some definite and orderly scheme of abstract relations, the kind of scheme he can borrow only from mathematics." (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"This abstracting of common experience is one of the principal sources of the utility of mathematics and the secret of its scientific power. The world that impinges on the senses of all but introverted solipsists is too intricate for any exact description yet imagined by human beings. By abstracting and simplifying the evidence of the senses, mathematics brings the worlds of science and daily life into focus with our myopic comprehension, and makes possible a rational description of our experiences which accords remarkably well with observation." (Eric T Bell, "The Development of Mathematics", 1940)

"We now come to a decisive step of mathematical abstraction: we forget about what the symbols stand for […] The mathematician] need not be idle; there are many operations which he may carry out with these symbols, without ever having to look at the things they stand for." (Hermann Weyl, "The Mathematical Way of Thinking", 1940)

"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories" American Scientific Vol. 31 (4), 1943)

"Mathematics being a very abstract science should be presented very concretely." (George Pólya, "How to Solve It", 1945)

"The straight line of the geometers does not exist in the material universe. It is a pure abstraction, an invention of the imagination or, if one prefers, an idea of the Eternal Mind." (Eric T Bell, "The Magic of Numbers", 1946)

"I think that it is a relatively good approximation to truth - which is much too complicated to allow anything but approximations - that mathematical ideas originate in empirics. But, once they are conceived, the subject begins to live a peculiar life of its own and is […] governed by almost entirely aesthetical motivations. In other words, at a great distance from its empirical source, or after much ‘abstract’ inbreeding, a mathematical subject is in danger of degeneration. Whenever this stage is reached the only remedy seems to me to be the rejuvenating return to the source: the reinjection of more or less directly empirical ideas." (John von Neumann,  "The Mathematician", The Works of the Mind Vol. I (1), 1947)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...