"The scientist takes off from the manifold observations of predecessors, and shows his intelligence, if any, by his ability to discriminate between the important and the negligible, by selecting here and there the significant stepping-stones that will lead across the difficulties to new understanding. The one who places the last stone and steps across the terra firma of accomplished discovery gets all the credit. Only the initiated know and honor those whose patient integrity and devotion to exact observation have made the last step possible." (Hans Zinsser, "As I Remember Him: The Biography of R.S.", 1940)
"This abstracting of common experience is one of the principal sources of the utility of mathematics and the secret of its scientific power. The world that impinges on the senses of all but introverted solipsists is too intricate for any exact description yet imagined by human beings. By abstracting and simplifying the evidence of the senses, mathematics brings the worlds of science and daily life into focus with our myopic comprehension, and makes possible a rational description of our experiences which accords remarkably well with observation." (Eric T Bell, "The Development of Mathematics", 1940)
"Mathematicians deal with possible worlds, with an infinite number of logically consistent systems. Observers explore the one particular world we inhabit. Between the two stands the theorist. He studies possible worlds but only those which are compatible with the information furnished by observers. In other words, theory attempts to segregate the minimum number of possible worlds which must include the actual world we inhabit. Then the observer, with new factual information, attempts to reduce the list further. And so it goes, observation and theory advancing together toward the common goal of science, knowledge of the structure and observation of the universe." (Edwin P Hubble, "The Problem of the Expanding Universe", 1941)
"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)
"Different kinds of facts, having different degrees of scientific value, are ascertainable in these two ways. Facts ascertainable by mere observation are what are called common-sense facts, i.e. facts accessible to a commonplace mind on occasions frequent enough to be rather often perceived and of such a kind that their characteristics can be adequately perceived without trouble: so that the facts concerning them can be familiar to persons not especially gifted and not especially alert." (Robin G Collingwood, "The New Leviathan: Or Man, Society, Civilization and Barbarism", 1942)
"Physicists who are trying to understand nature may work in many different fields and by many different methods; one may dig, one may sow, one may reap. But the final harvest will always be a sheaf of mathematical formulae. These will never describe nature itself, hut only our observations on nature. Our studies can never put us into contact with reality; we can never penetrate beyond the impressions that reality implants in our minds." (James H Jeans, "Physics and Philosophy", 1942)
"The faith of scientists in the power of mathematics is so implicit that their work has gradually become less and less observation, and more and more calculation. The promiscuous collection and tabulation of data have given way to a process of assigning possible meanings, merely supposed real entities, to mathematical terms, working out the logical results, and then staging certain crucial experiments to check the hypothesis against the actual, empirical results. But the facts [...] accepted by virtue of these tests are not actually observed at all." (Susanne K Langer, "Philosophy in a New Key", 1942)
"It is to be hoped that in the future more and more theoretical physicists will command a deep knowledge of mathematical principles; and also that mathematicians will no longer limit themselves so exclusively to the aesthetic development of mathematical abstractions." (George D Birkhoff, "Mathematical Nature of Physical Theories", American Scientist Vol. 31 (4), 1943)
"A model, like a novel, may resonate with nature, but it is not a ‘real’ thing. Like a novel, a model may be convincing - it may ‘ring true’ if it is consistent with our experience of the natural world. But just as we may wonder how much the characters in a novel are drawn from real life and how much is artifice, we might ask the same of a model: How much is based on observation and measurement of accessible phenomena, how much is convenience? Fundamentally, the reason for modeling is a lack of full access, either in time or space, to the phenomena of interest." (Kenneth Belitz, Science, Vol. 263, 1944)
"Only by the analysis and interpretation of observations as they are made, and the examination of the larger implications of the results, is one in a satisfactory position to pose new experimental and theoretical questions of the greatest significance." (John A Wheeler, "Elementary Particle Physics", American Scientist, 1947)
"We see what we want to see, and observation conforms to hypothesis." (Bergen Evans, "The Natural History of Nonsense", 1947)
"[...] the conception of chance enters in the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception that causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation." (Max Born, 1949)
No comments:
Post a Comment