23 January 2020

On Abstraction (1990-1999)

"All of engineering involves some creativity to cover the parts not known, and almost all of science includes some practical engineering to translate the abstractions into practice." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"That is, the physicist likes to learn from particular illustrations of a general abstract concept. The mathematician, on the other hand, often eschews the particular in pursuit of the most abstract and general formulation possible. Although the mathematician may think from, or through, particular concrete examples in coming to appreciate the likely truth of very general statements, he will hide all those intuitive steps when he comes to present the conclusions of his thinking to outsiders. It presents the results of research as a hierarchy of definitions, theorems and proofs after the manner of Euclid; this minimizes unnecessary words but very effectively disguises the natural train of thought that led to the original results." (John D Barrow, "New Theories of Everything", 1991)

"Great mathematics seldom comes from idle speculation about abstract spaces and symbols. More often than not it is motivated by definite questions arising in the worlds of nature and humans." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)


"A mental model is not normally based on formal definitions but rather on concrete properties that have been drawn from life experience. Mental models are typically analogs, and they comprise specific contents, but this does not necessarily restrict their power to deal with abstract concepts, as we will see. The important thing about mental models, especially in the context of mathematics, is the relations they represent. […]  The essence of understanding a concept is to have a mental representation or mental model that faithfully reflects the structure of that concept. (Lyn D. English & Graeme S. Halford, "Mathematics Education: Models and Processes", 1995)


"Music and math together satisfied a sort of abstract 'appetite', a desire that was partly intellectual, partly aesthetic, partly emotional, partly, even, physical." (Edward Rothstein, "Emblems of Mind: The Inner Life of Music and Mathematics", 1995)


"The larger, more detailed and complex the model - the less abstract the abstraction – the smaller the number of people capable of understanding it and the longer it takes for its weaknesses and limitations to be found out." (John Adams, "Risk", 1995)


"The representational nature of maps, however, is often ignored - what we see when looking at a map is not the word, but an abstract representation that we find convenient to use in place of the world. When we build these abstract representations we are not revealing knowledge as much as are creating it." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)


"Abstract concepts are largely metaphorical." (George Lakoff, "Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought", 1999)


"The abstractions of science are stereotypes, as two-dimensional and as potentially misleading as everyday stereotypes. And yet they are as necessary to the process of understanding as filtering is to the process of perception." (K C Cole, "First You Build a Cloud and Other Reflections on Physics as a Way of Life", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...