22 August 2020

On Mechanisms I: On Pendulum

"Science gains from it [the pendulum] more than one can expect. With its huge dimensions, the apparatus presents qualities that one would try in vain to communicate by constructing it on a small [scale], no matter how carefully. Already the regularity of its motion promises the most conclusive results. One collects numbers that, compared with the predictions of theory, permit one to appreciate how far the true pendulum approximates or differs from the abstract system called 'the simple pendulum'." (Jean-Bernard-Léon Foucault, "Demonstration Experimentale du Movement de Rotation de la Terre", 1851)

"The force acting on the pendulum is proportional to its active mass, its inertia is proportional to its passive mass, so that the period will depend on the ratio of the passive and the active mass. Consequently the fact that the period of all these different pendulums was the same, proves that this ratio is a constant, and can be made equal to unity by a suitable choice of units, i. e., the inertial and the gravitational mass are the same." (Willem de Sitter, "The Astronomical Aspect of the Theory of Relativity", 1933)

"[…] we must be clear about how a 'system' is to be defined. Our first impulse is to point at the pendulum and to 'the system is that thing there' . This method, however, has a fundamental disadvantage: every material object contains no less than an infinity of variables and therefore of possible systems. The real pendulum, for instance, has not only length and position; it has also mass, temperature, electric conductivity, crystalline structure, chemical impurities, some radio-activity, velocity, reflecting power, tensile strength, a surface film of moisture, bacterial contamination, an optical absorption, elasticity, shape, specific gravity, and so on and on. Any suggestion that we should study 'all' the facts is unrealistic, and actually the attempt is never made. What is try is that we should pick out and study the facts that are relevant to some main interest that is already given." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[…] the equation of small oscillations of a pendulum also holds for other vibrational phenomena. In investigating swinging pendulums we were, albeit unwittingly, also investigating vibrating tuning forks." (George Pólya, "Mathematical Methods in Science", 1977)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system. (James Gleick, "Chaos: Making a New Science", 1987)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"Dynamical systems that vary continuously, like the pendulum and the rolling rock, and evidently the pinball machine when a ball’s complete motion is considered, are technically known as flows. The mathematical tool for handling a flow is the differential equation. A system of differential equations amounts to a set of formulas that together express the rates at which all of the variables are currently changing, in terms of the current values of the variables." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Just as few concrete physical systems are strictly deterministic in their behavior, so very few are strictly linear. The great importance of linearity lies in a combination of two circumstances. First, many tangible phenomena behave approximately linearly over restricted periods of time or restricted ranges of the variables, so that useful linear mathematical models can simulate their behavior. A pendulum swinging through a small angle is a nearly linear system. Second, linear equations can be handled by a wide variety of techniques that do not work with nonlinear equations." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Systems that vary deterministically as time progresses, such as mathematical models of the swinging pendulum, the rolling rock, and the breaking wave, and also systems that vary with an inconsequential amount of randomness - possibly a real pendulum, rock, or wave - are technically known as dynamical systems." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Most of us use the word 'chaos' rather loosely to represent anything that occurs randomly, so it is natural to think that the motion described by the erratic pendulum above is completely random. Not so. The scientific definition of chaos is different from the one you may be used to in that it has an element of determinism in it. This might seem strange, as determinism and chaos are opposites of one another, but oddly enough they are also compatible." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"One of the reasons we deal with the pendulum is that it is easy to plot its motion in phase space. If the amplitude is small, it's a two-dimensional problem, so all we need to specify it completely is its position and its velocity. We can make a two-dimensional plot with one axis (the horizontal), position, and the other (the vertical), velocity." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"Real dynamical problems typically involve nonlinear differential equations of second order, but these often simplify greatly if we investigate small oscillations about a position of equilibrium. Coupled oscillators are particularly interesting, an early example being the double pendulum, first studied by Euler and Daniel Bernoulli in the 1730s." (David Acheson, "From Calculus to Chaos: An Introduction to Dynamics", 1997)

"Financial markets are supposed to swing like a pendulum: They may fluctuate wildly in response to exogenous shocks, but eventually they are supposed to come to rest at an equilibrium point and that point is supposed to be the same irrespective of the interim fluctuations." (George Soros, "The Crisis of Global Capitalism", 1998)

"According to quantum theory, the ground state, or lowest energy state, of a pendulum is not just sitting at the lowest energy point, pointing straight down. That would have both a definite position and a definite velocity, zero. This would be a violation of the uncertainty principle, which forbids the precise measurement of both position and velocity at the same time. The uncertainty in the position multiplied by the uncertainty in the momentum must be greater than a certain quantity, known as Planck's constant - a number that is too long to keep writing down, so we use a symbol for it: ħ." (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"So the ground state, or lowest energy state, of a pendulum does not have zero energy, as one might expect. Instead, even in its ground state a pendulum or any oscillating system must have a certain minimum amount of what are called zero point fluctuations. These mean that the pendulum won't necessarily be pointing straight down but will also have a probability of being found at a small angle to the vertical. Similarly, even in the vacuum or lowest energy state, the waves in the Maxwell field won't be exactly zero but can have small sizes. The higher the frequency (the number of swings per minute) of the pendulum or wave, the higher the energy of the ground state." (Stephen W Hawking, "The Universe in a Nutshell", 2001)

"[…] some systems (system is just a jargon for anything, like the swinging pendulum or the Solar System, or water dripping from a tap)  are very sensitive to their starting conditions, so that a tiny difference in the initial ‘push’ you give them causes a big difference in where they end up, and there is feedback, so that what a system does affects its own behavior."(John Gribbin, "Deep Simplicity", 2004)

"All pendulums exhibit such rotation, but for most pendulums this behavior is masked by other more prominent effects. For an ideal Foucault pendulum, the plane of oscillation would be seen as fixed by an observer positioned in the stars. (In this discussion we ignore the rotation of the earth around the sun, and the rotation of the sun around the center of the galaxy, and so forth.) Therefore the earthbound observer sees a slow rotation of the plane of oscillation and it is this remarkable feature of the Foucault pendulum which demonstrates, on a large scale, the rotation of the earth." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"For very long pendulums the spurious effects are small, and the main concern is the dissipation of energy as the pendulum gradually losses amplitude. However, for short pendulums the spurious effects are, not negligible. After the following literary divertissement, we note some ways that builders of Foucault pendulums have overcome the complicating effects of these limitations and thereby produced workable pendulums that are much smaller than Foucault’s original giant creation." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"In theory, any earth-based pendulum is a Foucault pendulum. However, a realistic Foucault pendulum is a one that is specially constructed to highlight the rotation of its plane of oscillation due to the earth’s rotation relative to a frame of reference fixed in the stars. That is, the plane of the pendulum’s oscillation is fixed relative to the stars while the earth rotates underneath it." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

 "Pendulum clocks exemplify important physical concepts. The clock needs to have some method of transferring energy to the pendulum to maintain its oscillation. There also needs to be a method whereby the pendulum regulates the motion of the clock. These two requirements are encompassed in one remarkable mechanism called the escapement. The escapement is a marvelous invention in that it makes the pendulum clock one of the first examples of an automaton with self-regulating feedback." (Gregory L Baker & Jammes A Blackburn, "The Pendulum: A Case Study in Physics", 2005)

"A pendulum is simply a small load suspended to a string or to a rod fixed at one end. If left alone it ends up hanging vertically, and if we push it away from the vertical, it starts beating. Galileo found that all beats last the same time, called the period, which depends on the length of the pendulum, but not on the amplitude of the beats or on the weight of the load. It also states that the period varies as the square root of the length: to double its period, one should make the pendulum four times as long. Making it heavier, or pushing it farther away from the vertical, has no effect. This property is known as isochrony, and it is the main reason why we are able to measure time with accuracy." (Ivar Ekeland, "The Best of All Possible Worlds", 2006)

"In this world, there are two times. There is mechanical time and there is body time. The first is as rigid and metallic as a massive pendulum of iron that swings back and forth, back and forth, back and forth. The second squirms and wriggles like a bluefish in a bay. The first is unyielding, predetermined. The second makes up its mind as it goes along." (Alan Lightman, "Einstein's Dreams", 2012)

"Social scientists use the term 'equilibrium' to describe balance between opposing forces, say, supply and demand, so small disturbances or deviations in one direction, like those of a pendulum, would be countered with an adjustment in the opposite direction that would bring things back to stability." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"In mathematics, pendulums stimulated the development of calculus through the riddles they posed. In physics and engineering, pendulums became paradigms of oscillation. […] In some cases, the connections between pendulums and other phenomena are so exact that the same equations can be recycled without change. Only the symbols need to be reinterpreted; the syntax stays the same. It’s as if nature keeps returning to the same motif again and again, a pendular repetition of a pendular theme. For example, the equations for the swinging of a pendulum carry over without change to those for the spinning of generators that produce alternating current and send it to our homes and offices. In honor of that pedigree, electrical engineers refer to their generator equations as swing equations." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Mathematical Reasoning

"The Reader may here observe the Force of Numbers, which can be successfully applied, even to those things, which one would imagine are...