14 September 2025

On Bernhardt Riemann

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; and that we can only find out by experience to which of these kinds the space in which we live belongs. In particular, the axioms of plane geometry are true within the limits of experiment on the surface of a sheet of paper, and yet we know that the sheet is really covered with a number of small ridges and furrows, upon which (the total curvature not being zero) these axioms are not true. Similarly, he says although the axioms of solid geometry are true within the limits of experiment for finite portions of our space, yet we have no reason to conclude that they are true for very small portions; and if any help can be got thereby for the explanation of physical phenomena, we may have reason to conclude that they are not true for very small portions of space." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870

"Two Riemann surfaces which can be mapped conformally onto each other are (conformally) equivalent and are to be regarded as different representations of one and the same ideal Riemann surface. The intrinsic properties of a Riemann surface will include only those properties which are invariant under conformal maps; that is, those properties which, if possessed by one Riemann surface are possessed by every equivalent surface. Obviously all topological properties are intrinsic properties of a Riemann surface; similarly with those properties belonging to the surface by virtue of its smoothness." (Hermann Weyl, "The Concept of a Riemann Surface", 1913) 

"No one has ever been able to prove, for example, that every even number greater than two can be expressed as the sum of two primes. Yet this is as well established by observation as any of the laws of physics. It is known that this and various other theorems are true if a certain hypothesis about the Zeta function, enunciated by Riemann nearly a century ago, is correct. No one has been able to prove this hypothesis. It has only been shown that all the consequences deducible if it is true are so far verified by experience. But any day a computer with little knowledge of pure mathematics may disprove it. Here then is a possible triumph for the mathematical amateur." (John B S Haldane, "Possible Worlds and Other Essays", 1928)

"Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be born at a certain time; great mathematicians appeared because the cultural conditions - and this includes the mathematical materials - were conducive to developing them." (Raymond L Wilder, "Introduction to the Foundations of Mathematics", 1952)

"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)

"Riemann concluded that electricity, magnetism, and gravity are caused by the crumpling of our three-dimensional universe in the unseen fourth dimension. Thus a 'force' has no independent life of its own; it is only the apparent effect caused by the distortion of geometry. By introducing the fourth spatial dimension, Riemann accidentally stumbled on what would become one of the dominant themes in modern theoretical physics, that the laws of nature appear simple when expressed in higher-dimensional space. He then set about developing a mathematical language in which this idea could be expressed." (Michio Kaku, "Hyperspace", 1995)

"[...] for more than 40 years I have claimed that if whether an airplane would fly or not depended on whether some function that arose in its design was Lebesgue but not Riemann integrable, then I would not fly in it. Would you? Does Nature recognize the difference? I doubt it! You may, of course, choose as you please in this matter, but I have noticed that year by year the Lebesgue integration, and indeed all of measure theory, seems to be playing a smaller and smaller role in other fields of mathematics, and none at all in fields that merely use mathematics [...]" (Richard W Hamming, "Mathematics On a Distant Planet", The American Mathematical Monthly, 1998)

"Maybe we have become so hung up on looking at the primes from Gauss's and Riemann's perspective that what we are missing is simply a different way to understand these enigmatic numbers. Gauss gave an estimate for the number of primes, Riemann predicted that the guess is at worst the square root of N off its mark, Littlewood showed that you can't do better than this. Maybe there is an alternative viewpoint that no one has found because we have become so culturally attached to the house that Gauss built." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"One of the current ideas regarding the Riemann hypothesis is that the zeros of the zeta function can be interpreted as eigenvalues of certain matrices. This line of thinking is attractive and is potentially a good way to attack the hypothesis, since it gives a possible connection to physical phenomena. [...] Empirical results indicate that the zeros of the Riemann zeta function are indeed distributed like the eigenvalues of certain matrix ensembles, in particular the Gaussian unitary ensemble. This suggests that random matrix theory might provide an avenue for the proof of the Riemann hypothesis." (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007)

"The splendid creations of this theory have excited the admiration of mathematicians mainly because they have enriched our science in an almost unparalleled way with an abundance of new ideas and opened up heretofore wholly unknown fields to research. The Cauchy integral formula, the Riemann mapping theorem and the Weierstrass power series calculus not only laid the groundwork for a new branch of mathematics but at the same time they furnished the first and till now the most fruitful example of the intimate connections between analysis and algebra. But it isn't just the wealth of novel ideas and discoveries which the new theory furnishes; of equal importance on the other hand are the boldness and profundity of the methods by which the greatest of difficulties are overcome and the most recondite of truths, the mysteria functiorum, are exposed tothe brightest." (Richard Dedekind) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Bernhardt Riemann

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; ...