07 September 2025

On Albert Einstein - Historical Perspectives

"I believe that, as regards the development of physics, we can be very happy to have such an original young thinker, a 'Boltzmann redivivus'; the same certainty and speed of thought; great boldness in theory, which however cannot harm, since the most intimate contact with experiment is preserved. Einstein’s 'quantum hypothesis' is probably among the most remarkable thought [constructions] ever; if it is correct, then it indicates completely new paths [for the ether and molecular theories;] if it false, well, then it will remain for all times ’a beautiful memory'." (Arthur Schuster, 1910)

"The present revolution of scientific thought follows in natural sequence on the great revolutions at earlier epochs in the history of science. Einstein’s special theory of relativity, which explains the indeterminateness of the frame of space and time, crowns the work of Copernicus who first led us to give up our insistence on a geocentric outlook on nature; Einstein's general theory of relativity, which reveals the curvature or non-Euclidean geometry of space and time, carries forward the rudimentary thought of those earlier astronomers who first contemplated the possibility that their existence lay on something which was not flat. These earlier revolutions are still a source of perplexity in childhood, which we soon outgrow; and a time will come when Einstein’s amazing revelations have likewise sunk into the commonplaces of educated thought." (Arthur S Eddington, "The Theory of Relativity and its Influence on Scientific Thought", 1922)

"When Faraday filled space with quivering lines of force, he was bringing mathematics into electricity. When Maxwell stated his famous laws about the electromagnetic field it was mathematics. The relativity theory of Einstein which makes gravity a fiction, and reduces the mechanics of the universe to geometry, is mathematical research." (James B Shaw, "The Spirit of Research", The Monist No. 4, 1922)

"The generalized theory of relativity has furnished still more remarkable results. This considers not only uniform but also accelerated motion. In particular, it is based on the impossibility of distinguishing an acceleration from the gravitation or other force which produces it. Three consequences of the theory may be mentioned of which two have been confirmed while the third is still on trial: (1) It gives a correct explanation of the residual motion of forty-three seconds of arc per century of the perihelion of Mercury. (2) It predicts the deviation which a ray of light from a star should experience on passing near a large gravitating body, the sun, namely, 1".7. On Newton's corpuscular theory this should be only half as great. As a result of the measurements of the photographs of the eclipse of 1921 the number found was much nearer to the prediction of Einstein, and was inversely proportional to the distance from the center of the sun, in further confirmation of the theory. (3) The theory predicts a displacement of the solar spectral lines, and it seems that this prediction is also verified" (Albert A Michelson, "Studies in Optics", 1927)

"Einstein's relativity work is a magnificent mathematical garb which fascinates, dazzles and makes people blind to the underlying errors. The theory is like a beggar clothed in purple whom ignorant people take for a king [...] its exponents are brilliant men but they are metaphysicists rather than scientists." (Nikola Tesla, New York Times, 1935)

"The difference is that energy is a property of the microstates, and so all observers, whatever macroscopic variables they may choose to define their thermodynamic states, must ascribe the same energy to a system in a given microstate. But they will ascribe different entropies to that microstate, because entropy is not a property of the microstate, but rather of the reference class in which it is embedded. As we learned from Boltzmann, Planck, and Einstein, the entropy of a thermodynamic state is a measure of the number of microstates compatible with the macroscopic quantities that you or I use to define the thermodynamic state." (Edwin T Jaynes, "Papers on Probability, Statistics, and Statistical Physics", 1983)

"String theory promises to take a further step beyond that taken by Einstein's picture of force subsumed within curved space and time geometry. Indeed, string theory contains Einstein's theory of gravitation within itself. Loops of string behave like the exchange particles of the gravitational forces, or 'gravitons' as they are called in the point-particle picture of things. But it has been argued that it must be possible to extract even the geometry of space and time from the characteristics of the strings and their topological properties. At present, it is not known how to do this and we merely content ourselves with understanding how strings behave when they sit in a background universe of space and time."  (John D Barrow, "New Theories of Everything: The Quest for Ultimate Explanation", 1991)

"Newton was the greatest creative genius physics has ever seen. None of the other candidates for the superlative (Einstein, Maxwell, Boltzmann, Gibbs, and Feynman) has matched Newton’s combined achievements as theoretician, experimentalist, and mathematician. […] If you were to become a time traveler and meet Newton on a trip back to the seventeenth century, you might find him something like the performer who first exasperates everyone in sight and then goes on stage and sings like an angel." William H Cropper,"Great Physicists", 2001)

"In string theory one studies strings moving in a fixed classical spacetime. […] what we call a background-dependent approach. […] One of the fundamental discoveries of Einstein is that there is no fixed background. The very geometry of space and time is a dynamical system that evolves in time. The experimental observations that energy leaks from binary pulsars in the form of gravitational waves - at the rate predicted by general relativity to the […] accuracy of eleven decimal place - tell us that there is no more a fixed background of spacetime geometry than there are fixed crystal spheres holding the planets up." (Lee Smolin, "Loop Quantum Gravity", The New Humanists: Science at the Edge, 2003)

"Relativity was a highly technical new theory that gave new meanings to familiar concepts and even to the nature of the theory itself. The general public looked upon relativity as indicative of the seemingly incomprehensible modern era, educated scientists despaired of ever understanding what Einstein had done, and political ideologues used the new theory to exploit public fears and anxieties - all of which opened a rift between science and the broader culture that continues to expand today." (David C Cassidy, "The Cultural Legacy of Relativity Theory", 2005)

"Clausius, Maxwell, Boltzmann and Gibbs had a feeling for the statistical interpretation of the second principle of thermodynamics and defended it. But their explanations were based on thought experiments coming from the postulate of the existence of molecules. Only after the discovery of Brownian motion does the interpretation of the second principle of thermodynamics as an absolute law become impossible. Brownian particles rising and falling as a result of the thermal motion of the molecules is a clear demonstration for us of a perpetual motion machine of the second kind. Therefore at the end of the 19th century the investigation of Brownian motion acquired enormous theoretical significance and attracted the attention of many theoretical physicists including Einstein." (Vladimir Zorich, "Mathematical Analysis of Problems in the Natural Sciences", 2010)

"Using matrices, Dirac was able to write an equation relating the total energy of a body to a sum of its energy at rest and its energy in motion, all consistent with Einstein’s theory of relativity. The fact that matrices keep account of what happens when things rotate was a bonus, as the maths was apparently saying that an electron can itself rotate: can spin! Furthermore, the fact that he had been able to solve the mathematics by using the simplest matrices, where a single number was replaced by two columns of pairs, implied a ‘two-ness’ to the spin, precisely what the Zeeman effect had implied. The missing ingredi ent in Schrodinger’s theory had miraculously emerged from the mathematics of matrices, which had been forced on Dirac by the requirements of Einstein’s theory of relativity." (Frank Close, "Antimatter", 2009)

"Starting with Einstein’s general relativity, differential geometry has started playing a major role in physics. General relativity describes the gravitational fields as a metric property of the spacetime manifold. More precisely, spacetime (i.e., the manifold the points of which are events; we may intuitively say that an event is ‘something that happens in a given point in space at a certain time’) is supposed to be endowed with a Lorentzian metric. This means that spacetime has pointwise the same structure as the Minkowski space of special relativity but in general is not flat, as on the contrary Minkowski space is. Indeed, out of the metric tensor one can construct another tensor field, the curvature field, which measures how far the geometry of spacetime is from that of a flat space. The celebrated Einstein equations prescribe how the matter in our universe determines the curvature of spacetime, and in turn the curvature determines how matter (particles, light rays, extended bodies…) moves." (Claudio Bartocci & Ugo Bruzzo, [Claudio Bartocci et al (Eds), "New Trends in Geometry: Their tole in the natural and social sciences"], 2011)

"Ironically, conventional quantum mechanics itself involves a vast expansion of physical reality, which may be enough to avoid Einstein Insanity. The equations of quantum dynamics allow physicists to predict the future values of the wave function, given its present value. According to the Schrödinger equation, the wave function evolves in a completely predictable way. But in practice we never have access to the full wave function, either at present or in the future, so this 'predictability' is unattainable. If the wave function provides the ultimate description of reality - a controversial issue!" (Frank Wilczek, "Einstein’s Parable of Quantum Insanity", 2015) 

"[…] Einstein showed, for 'stuff' like space and time, seemingly stable, unchangeable aspects of nature; in truth, it’s the relationship between space and time that always stays the same, even as space contracts and time dilates. Like energy and matter, space and time are mutable manifestations of deeper, unshakable foundations: the things that never vary no matter what." (K C Cole, "The Simple Idea Behind Einstein’s Greatest Discoveries", Quanta Magazine, 2019) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

James G Ballard - Collected Quotes

"A few moments earlier the water had seemed cool and inviting, but now had  become a closed world, the barrier of the surface like a pl...