21 September 2025

On Maps (2000-2009)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Even if our cognitive maps of causal structure were perfect, learning, especially double-loop learning, would still be difficult. To use a mental model to design a new strategy or organization we must make inferences about the consequences of decision rules that have never been tried and for which we have no data. To do so requires intuitive solution of high-order nonlinear differential equations, a task far exceeding human cognitive capabilities in all but the simplest systems." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"[…] the search for a Theory of Everything also raises interesting philosophical questions. Some physicists, [Stephen] Hawking among them, would regard the construction of a Theory of Everything as being, in some sense, reading the mind of God. Or at least unravelling the inner secrets of physical reality. Others simply argue that a physical theory is just a description of reality, rather like a map." (Peter Coles, "Hawking and the Mind of God", 2000)

"Concept maps have long provided visual languages widely used in many different disciplines and application domains. Abstractly, they are sorted graphs visually represented as nodes having a type, name and content, some of which are linked by arcs. Concretely, they are structured diagrams having discipline- and domain-specific interpretations for their user communities, and, sometimes, formally defining computer data structures. Concept maps have been used for a wide range of purposes and it would be useful to make such usage available over the World Wide Web." (Brian R Gaines, "WebMap: Concept Mapping on the Web", 2001)

"Our view of reality is like a map with which to negotiate the terrain of life. If the map is true and accurate, we will generally know how to get there. If the map is false and inaccurate, we generally will be lost." (M Scott Peck, "Wisdom from the Road Less Traveled", 2001)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"Maps are models, and every model represents some aspect of reality or an idea that is of interest. A model is a simplification. It is an interpretation of reality that abstracts the aspects relevant to solving the problem at hand and ignores extraneous detail." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"The value of mapping is that it allows us to understand, plan, and communicate about some experience or phenomenon without having to actually 'be there'." (Robert B. Dilts, "From Coach to Awakener", 2003)

"Science does not speak of the world in the language of words alone, and in many cases it simply cannot do so. The natural language of science is a synergistic integration of words, diagrams, pictures, graphs, maps, equations, tables, charts, and other forms of visual and mathematical expression. [… Science thus consists of] the languages of visual representation, the languages of mathematical symbolism, and the languages of experimental operations." (Jay Lemke, "Teaching all the languages of science: Words, symbols, images and actions", 2003)

"Although nature suggests a pathway to a mathematical description of everything, it has thus far eluded a final or complete grand mathematical synthesis. […] Mathematics is therefore inspired by nature. But it does not have to conduct experimental observations to proceed. The worlds of mathematics and theoretical physics are therefore distinct - they have different 'mission statements'. Whereas theoretical physics maps the properties of the nature we experience, mathematics builds a map of all possible 'natures' that logic permits to exist." (Leon M Lederman & Christopher T Hill, "Symmetry and the Beautiful Universe", 2004)

"[Maps] are a way of cataloguing the 'important' (and ignoring the 'unimportant') features of the earth’s surface and the social world; a way of accounting for the resources, objects and public infrastructure of the earth’s surface; and a tool for the representation and territorialization of space (emphasis in original)." (John Pickles, "A History of Spaces: Cartographic Reason, Mapping and the Geo-Coded World", 2004)

"On the maps provided by science, we find everything except ourselves." (Bryan Appleyard, "Understanding the Present: An Alternative History of Science", 2004)

"There is no end to the information we can use. A 'good' map provides the information we need for a particular purpose - or the information the mapmaker wants us to have. To guide us, a map’s designers must consider more than content and projection; any single map involves hundreds of decisions about presentation." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"When people question assumptions, the map may clarify what they are. When logic is challenged, the map may help. When people want to know how goals and strategies are linked, the map may show how they are. The map does not make the decisions. Rather, it provides a record that preserves complexity, yet organizes and categorizes that complexity in such a way that people can understand and manage it. And if more mapping needs to be done, the map is there as a base on which to build." (John M Bryson et al, "Visible Thinking: Unlocking Causal Mapping For Practical Business Results", 2004)

"A road plan can show the exact location, elevation, and dimensions of any part of the structure. The map corresponds to the structure, but it's not the same as the structure. Software, on the other hand, is just a codification of the behaviors that the programmers and users want to take place. The map is the same as the structure. […] This means that software can only be described accurately at the level of individual instructions. […] A map or a blueprint for a piece of software must greatly simplify the representation in order to be comprehensible. But by doing so, it becomes inaccurate and ultimately incorrect. This is an important realization: any architecture, design, or diagram we create for software is essentially inadequate. If we represent every detail, then we're merely duplicating the software in another form, and we're wasting our time and effort." (George Stepanek, "Software Project Secrets: Why Software Projects Fail", 2005) 

"Convergence is, in my opinion, not only deeply fascinating but, curiously, it is as often overlooked. More importantly, it hints at the existence of a deeper structure to biology. It helps us to delineate a metaphorical map across which evolution must navigate. In this sense the Darwinian mechanisms and the organic substrate we call life are really a search engine to discover particular solutions, including intelligence and - risky thought - perhaps deeper realities?" (Simon C Morris,  "Aliens like us?", Astronomy and Geophysics Vol. 46 (4), 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"It is common to think of statistical graphics and data visualization as relatively modern developments in statistics. In fact, the graphic representation of quantitative information has deep roots. These roots reach into the histories of the earliest map-making and visual depiction, and later into thematic cartography, statistics and statistical graphics, medicine, and other fields. Along the way, developments in technologies (printing, reproduction) mathematical theory and practice, and empirical observation and recording, enabled the wider use of graphics and new advances in form and content." (Michael Friendly. "A brief history of data visualization", 2006)

"The way you describe the tale is by telling the story. It is a balancing act and a dream. The more accurate the map, the more it resembles the territory. The most accurate map [...] would be the territory and thus would be perfectly accurate and perfectly useless. The tale is the map that is the territory." (Neil Gaiman, "Fragile Things: Short Fictions and Wonders", 2006)

"But ignorance exists in the map, not in the territory. If I am ignorant about a phenomenon, that is a fact about my own state of mind, not a fact about the phenomenon itself. A phenomenon can seem mysterious to some particular person. There are no phenomena which are mysterious of themselves. To worship a phenomenon because it seems so wonderfully mysterious, is to worship your own ignorance." (Eliezer Yudkowsky, "Mysterious Answers To Mysterious Questions" 2007)

"Science is the art of the appropriate approximation. While the flat earth model is usually spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use the flat earth model as an approximation to the more complicated shape." (Byron K Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"Placing a fact within a context increases its value greatly. […] . An efficacious way to add context to statistical facts is by embedding them in a graphic. Sometimes the most helpful context is geographical, and shaded maps come to mind as examples. Sometimes the most helpful context is temporal, and time-based line graphs are the obvious choice. But how much time? The ending date (today) is usually clear, but where do you start? The starting point determines the scale. […] The starting point and hence the scale are determined by the questions that we expect the graph to answer." (Howard Wainer, "Graphic Discovery: A trout in the milk and other visuals" 2nd, 2008)

"A map does not just chart, it unlocks and formulates meaning; it forms bridges between here and there, between disparate ideas that we did not know were previously connected." (Reif Larsen, "The Selected Works of T S Spivet", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Models: Bad Models

"A bad model is a combination of assertions, some factual, others conjectural, and others plainly false but convenient. [..]  By defini...