14 September 2025

On Carl Friedrich Gauss

"According to his frequently expressed view, Gauss considered the three dimensions of space as specific peculiarities of the human soul; people, which are unable to comprehend this, he designated in his humorous mood by the name Bœotians. We could imagine ourselves, he said, as beings which are conscious of but two dimensions; higher beings might look at us in a like manner, and continuing jokingly, he said that he had laid aside certain problems which, when in a higher state of being, he hoped to investigate geometrically." (Wolfgang S von Waltershausen, [in Gauss' memory] 1856)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"The invention of the symbol ≡ by Gauss affords a striking example of the advantage which may be derived from an appropriate notation, and marks an epoch in the development of the science of arithmetic." (George B Mathews, "Theory of Numbers", 1892)

"Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be born at a certain time; great mathematicians appeared because the cultural conditions - and this includes the mathematical materials - were conducive to developing them." (Raymond L Wilder, "Introduction to the Foundations of Mathematics", 1952)

"There is no doubt [...] that mathematicians are generally overzealous about conciseness, and in their passion for brevity indulge in symbols even where these seem no better than a familiar English word or phrase. A faulty judgement has caused mathematicians to equate elegance and conciseness at the cost of intelligibility. Gauss himself wrote elegant, but highly compact, carefully polished papers with no hint of the motivation, meaning, or details of the steps. When criticized, he said that no architect leaves the scaffolding after completing the building. But the fact is that even excellent mathematicians found the reading of Gauss's papers very difficult, and the same is true of many other mathematicians." (Morris Kline, "Mathematics and the Physical World", 1959)

"The histogram, with its columns of area proportional to number, like the bar graph, is one of the most classical of statistical graphs. Its combination with a fitted bell-shaped curve has been common since the days when the Gaussian curve entered statistics. Yet as a graphical technique it really performs quite poorly. Who is there among us who can look at a histogram-fitted Gaussian combination and tell us, reliably, whether the fit is excellent, neutral, or poor? Who can tell us, when the fit is poor, of what the poorness consists? Yet these are just the sort of questions that a good graphical technique should answer at least approximately." (John W Tukey, "The Future of Processes of Data Analysis", 1965)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"The fundamental concept of Gauss’s surface theory is the curvature, a quantity that is positive (and constant) for a sphere, zero for the plane and cylinder, and negative for surfaces that are 'saddle-shaped' in the neighborhood of each point." (John Stillwell, The Four Pillars of Geometry, 2000)

"Gauss liked to call [number theory] 'the Queen of Mathematics'. For Gauss, the jewels in the crown were the primes, numbers which had fascinated and teased generations of mathematicians." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Maybe we have become so hung up on looking at the primes from Gauss's and Riemann's perspective that what we are missing is simply a different way to understand these enigmatic numbers. Gauss gave an estimate for the number of primes, Riemann predicted that the guess is at worst the square root of N off its mark, Littlewood showed that you can't do better than this. Maybe there is an alternative viewpoint that no one has found because we have become so culturally attached to the house that Gauss built." (Marcus du Sautoy, "The Music of the Primes", 2003)

"The revelation that the graph appears to climb so smoothly, even though the primes themselves are so unpredictable, is one of the most miraculous in mathematics and represents one of the high points in the story of the primes. On the back page of his book of logarithms, Gauss recorded the discovery of his formula for the number of primes up to N in terms of the logarithm function. Yet despite the importance of the discovery, Gauss told no one what he had found. The most the world heard of his revelation were the cryptic words, 'You have no idea how much poetry there is in a table of logarithms.'" (Marcus du Sautoy, "The Music of the Primes", 2003)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006)

"One of the ironies of mathematics is that the ratio of two Gaussian quantities gives a Cauchy quantity. So you get Cauchy noise if you divide one Gaussian white noise process by another. [...] There is a still deeper relationship between the Cauchy and Gaussian bell curves. Both belong to a special family of probability curves called stable distributions [...] Gaussian quantities [...] are closed under addition. If you add two Gaussian noises then the result is still a Gaussian noise. This 'stable' property is not true for most noise or probability types. It is true for Cauchy processes." (Bart Kosko, "Noise", 2006)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"But note that any heavy tailed process, even a power law, can be described in sample (that is finite number of observations necessarily discretized) by a simple Gaussian process with changing variance, a regime switching process, or a combination of Gaussian plus a series of variable jumps (though not one where jumps are of equal size […])." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

"Dirichlet alone, not I, nor Cauchy, nor Gauss knows what a completely rigorous mathematical proof is. Rather we learn it first from him. When Gauss says that he has proved something, it is very clear; when Cauchy says it, one can wager as much pro as con; when Dirichlet says it, it is certain."(Carl G J Jacobi)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Bernhardt Riemann

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; ...