Fermat's Last Theorem is to the effect that no integral values of x, y, z can be found to satisfy the equation xn+yn=zn if n is an integer greater than 2. [...] It is possible that Fermat made some... erroneous supposition, though it is perhaps more probable that he discovered a rigorous demonstration. At any rate he asserts definitely that he had a valid proof - demonstratio mirabilis sane - and the fact that no theorem on the subject which he stated he had proved has been subsequently shown to be false must weigh strongly in his favour; the more so because in making the one incorrect statement in his writings (namely, that about binary powers) he added that he could not obtain a satisfactory demonstration of it."(Walter W R Ball, "Mathematical Recreations and Essays", 1920)
"[…] it took more than a century before some of the simpler results which Fermat had enunciated were proved, and thus it is not surprising that a proof of the theorem which he succeeded in establishing only towards the close of his life should involve great difficulties. [...] I venture however to add my private suspicion that continued fractions played a not unimportant part in his researches, and as strengthening this conjecture I may note that some of his more recondite results - such as the theorem that a prime of the form 4n+1 is expressible as the sum of two squares - may be established with comparative ease by properties of such fractions." (Walter W R Ball, "Mathematical Recreations and Essays", 1920)
"Descartes' method of finding tangents and normals [...]was not a happy inspiration. It was quickly superseded by that of Fermat as amplified by Newton. Fermat's method amounts to obtaining a tangent as the limiting position of a secant, precisely as is done in the calculus today. [...] Fermat's method of tangents is the basis of the claim that he anticipated Newton in the invention of the differential calculus." (Eric T Bell, "The Development of Mathematics", 1940)
"Fermat had recourse to the principle of the economy of nature. Heron and Olympiodorus had pointed out in antiquity that, in reflection, light followed the shortest possible path, thus accounting for the equality of angles. During the medieval period Alhazen and Grosseteste had suggested that in refraction some such principle was also operating, but they could not discover the law. Fermat, however, not only knew (through Descartes) the law of refraction, but he also invented a procedure - equivalent to the differential calculus - for maximizing and minimizing a function of a single variable. [...] Fermat applied his method [...] and discovered, to his delight, that the result led to precisely the law which Descartes had enunciated. But although the law is the same, it will be noted that the hypothesis contradicts that of Descartes. Fermat assumed that the speed of light in water to be less than that in air; Descartes' explanation implied the opposite." (Carl B Boyer, "History of Analytic Geometry", 1956)
"Perhaps nowhere does one find a better example of the value of historical knowledge for mathematicians than in the case of Fermat, for it is safe to say that, had he not been intimately acquainted with the geometry of Apollonius and Viéte, he would not have invented analytic geometry." (Carl B Boyer, "History of Analytic Geometry", 1956)
"There are many ways to use unique prime factorization, and it is rightly regarded as a powerful idea in number theory. In fact, it is more powerful than Euclid could have imagined. There are complex numbers that behave like 'integers' and 'primes', and unique prime factorization holds for them as well. Complex integers were first used around 1770 by Euler, who found they have almost magical powers to unlock secrets of ordinary integers. For example, by using numbers of the form a + b√ -2. where a and b are integers, he was able to prove a claim of Fermat that 27 is the only cube that exceeds a square by 2. Euler's results were correct, but partly by good luck. He did not really understand complex 'primes' and their behavior." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)
"Solving any of the great unsolved problems in mathematics is akin to the first ascent of Everest. It is a formidable achievement, but after the conquest there is sometimes nowhere to go but down. Some of the great problems have proven to be isolated mountain peaks, disconnected from their neighbors. The Riemann hypothesis is quite different in this regard. There is a large body of mathematical speculation that becomes fact if the Riemann hypothesis is solved. We know many statements of the form “if the Riemann hypothesis, then the following interesting mathematical statement”, and this is rather different from the solution of problems such as the Fermat problem." (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007)
"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)
"Fermat is [...] honored with the invention of the differential calculus on account of his method of maxima and minima and of tangents, which, of the prior processes, is in reality the nearest to the algorithm of Leibniz; one could with equal justice, attribute to him the invention of the integral calculus; his treatise De æquationum localium transmutatione, etc., gives indeed the method of integration by parts as well as rules of integration, except the general powers of variables, their sines and powers thereof. However, it must be remarked that one does not find in his writings a single word on the main point, the relation between the two branches of the infinitesimal calculus." (Paul Tannery, "Fermat" [in La Grande Encyclopédie])
No comments:
Post a Comment