20 September 2025

On Gottfried W Leibniz

"In addition to that branch of geometry which is concerned with magnitudes, and which has always received the greatest attention, there is another branch, previously almost unknown, which Leibniz first mentioned, calling it the geometry of position. This branch is concerned only with the determination of position and its properties; it does not involve measurements, nor calculations made with them. It has not yet been satisfactorily determined what kind of problems are relevant to this geometry of position, or what methods should be used in solving them. Hence, when a problem was recently mentioned, which seemed geometrical but was so constructed that it did not require the measurement of distances, nor did calculation help at all, I had no doubt that it was concerned with the geometry of position, especially as its solution involved only position, and no calculation was of any use." (Leonhard Euler,"Solution of a problem relative to the geometry of position", 1735)

"The branch of geometry that deals with magnitudes has been zealously studied throughout the past, but there is another branch that has been almost unknown up to now; Leibniz spoke of it first, calling it the ‘geometry of position’ (geometria situs). This branch of geometry deals with relations dependent on position; it does not take magnitudes into considerations, nor does it involve calculation with quantities. But as yet no satisfactory definition has been given of the problems that belong to this geometry of position or of the method to be used in solving them." (Leonhard Euler, 1735)

"The analytical geometry of Descartes and the calculus of Newton and Leibniz have expanded into the marvelous mathematical method." (Nicholas M Butler," What Knowledge is of Most Worth?", 1895)

"Leibniz endeavored to provide an account of inference and judgment involving the mechanical play of symbols and very little else. The checklists that result are the first of humanity's intellectual artifacts. They express, they explain, and so they ratify a power of the mind. And, of course, they are artifacts in the process of becoming algorithms." (David Berlinski, "The Advent of the Algorithm: The Idea that Rules the World (ed. Houghton Mifflin", 2000) 

" Each man, therefore, is the entire world, bearing within his genes a memory of all mankind. Or as Leibniz put it: 'Every living substance is a perpetual living mirror of the universe'" (Paul Auster, "The Invention of Solitude" , 2007

"The good news is that, as Leibniz suggested, we appear to live in the best of all possible worlds, where the computable functions make life predictable enough to be survivable, while the noncomputable functions make life (and mathematical truth) unpredictable enough to remain interesting, no matter how far computers continue to advance."  (George B Dyson, "Turing's Cathedral: The Origins of the Digital Universe", 2012)

"Wessel and his fellow explorers had discovered the natural habitat of Leibniz’s ghostly amphibians: the complex plane. Once the imaginaries were pictured there, it became clear that their meaning could be anchored to a familiar thing - sideways or rotary motion - giving them an ontological heft they’d never had before. Their association with rotation also meant that they could be conceptually tied to another familiar idea: oscillation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Reason is indeed all about identity, or, rather, tautology. Mathematics is the eternal, necessary system of rational, analytic tautology. Tautology is not 'empty', as it is so often characterized by philosophers. It is in fact the fullest thing there, the analytic ground of existence, and the basis of everything. Mathematical tautology has infinite masks to wear, hence delivers infinite variety. Mathematical tautology provides Leibniz’s world that is 'simplest in hypothesis and the richest in phenomena'. No hypothesis cold be simpler than the one revolving around tautologies concerning 'nothing'. There is something - existence - because nothing is tautologous, and 'something' is how that tautology is expressed. If we write x = 0, where x is any expression that has zero as its net result, then we have a world of infinite possibilities where something ('x') equals nothing (0)." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"It appears that the solution of the problem of time and space is reserved to philosophers who, like Leibniz, are mathematicians, or to mathematicians who, like Einstein, are philosophers." (Hans Reichenbach)

"Leibniz's theorem... sets forth fundamentally that of all the worlds that may be created, the actual world is that which contains, besides the unavoidable evil, the maximum good." (Max Planck) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Maps (1970-1979)

"Because the subject matter of cybernetics is the propositional or informational aspect of the events and objects in the natural world,...