11 June 2019

On Theories (1930-1939)

"Every theory of the course of events in nature is necessarily based on some process of simplification and is to some extent, therefore, a fairy tale." (Sir Napier Shaw, “Manual of Meteorology”, 1932)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"A scientist commonly professes to base his beliefs on observations, not theories [...] have never come across anyone who carries this profession into practice. [...] Observation is not sufficient [...]  theory has an important share in determining belief." (Arthur S Eddington, "The Expanding Universe", 1933)

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." (Albert Einstein, [lecture] 1933)

“All the theories and hypotheses of empirical science share this provisional character of being established and accepted ‘until further notice’ [...]” (Carl G Hempel, "Geometry and Empirical Science”, 1935)

"Mathematical theories have been of great service in many experimental sciences in correlating the results of observations and in predicting new data afterward verified by observation. This has happened particularly in geometry, physics, and astronomy. But the relationship between a mathematical theory and the data which it is designed to relate is often misunderstood. When such a theory has been successful as a correlating agent, the conviction is likely to become established that the theory has a unique relationship to nature as interpreted for us by the observations. Furthermore, it is sometimes inferred that nature behaves in precisely the way which the mathematics indicates. As a matter of fact, nature never does behave in this way, and there are always more mathematical theories than one whose results depart from a given set of data by less than the errors of observation." (Mayme I Logsdon, "A Mathematician Explains", 1935)

”[while] the traditional way is to regard the facts of science as something like the parts of a jig-saw puzzle, which can be fitted together in one and only one way, I regard them rather as the tiny pieces of a mosaic, which can be fitted together in many ways. A new theory in an old subject is, for me, a new mosaic pattern made with the pieces taken from an older pattern. [...] Theories come into fashion and theories go out of fashion, but the facts connected with them stay.” (William H George, “The Scientist in Action”, 1936)

"Every new theory as it arises believes in the flush of youth that it has the long sought goal; it sees no limits to its applicability, and believes that at last it is the fortunate theory to achieve the 'right' answer." (Percy W Bridgman, "The Nature of Physical Theory", 1936)

"When an active individual of sound common sense perceives the sordid state of the world, desire to change it becomes the guiding principle by which he organizes given facts and shapes them into a theory. The methods and categories as well as the transformation of the theory can be understood only in connection with his taking of sides. This, in turn, discloses both his sound common sense and the character of the world. Right thinking depends as much on right willing as right willing on right thinking." (Max Horkheimer, "The Latest Attack on Metaphysics", 1937)

“Creating a new theory is not like destroying an old barn and erecting a skyscraper in its place. It is rather like climbing a mountain, gaining new and wider views, discovering unexpected connections between our starting point and its rich environment. But the point from which we started out still exists and can be seen, although it appears smaller and forms a tiny part of our broad view gained by the mastery of the obstacles on our adventurous way up.” (Albert Einstein & Leopold Infeld, ”The Evolution of Physics”, 1938)

"The laws of science are the permanent contributions to knowledge - the individual pieces that are fitted together in an attempt to form a picture of the physical universe in action. As the pieces fall into place, we often catch glimpses of emerging patterns, called theories; they set us searching for the missing pieces that will fill in the gaps and complete the patterns. These theories, these provisional interpretations of the data in hand, are mere working hypotheses, and they are treated with scant respect until they can be tested by new pieces of the puzzle." (Edwin P Whipple, "Experiment and Experience", [Commencement Address, California Institute of Technology] 1938)

“With the help of physical theories we try to find our way through the maze of observed facts, to order and understand the world of our sense impressions.” (Albert Einstein & Leopold Infeld, ”The Evolution of Physics”, 1938)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...