23 June 2019

On Proofs (1990-1999)

"[...] mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It’s the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.“ (Ivars Peterson, „Islands of Truth: A Mathematical Mystery Cruise“, 1990)

"A distinctive feature of mathematics, that feature in virtue of which it stands as a paradigmatically rational discipline, is that assertions are not accepted without proof. […] By proof is meant a deductively valid, rationally compelling argument which shows why this must be so, given what it is to be a triangle. But arguments always have premises so that if there are to be any proofs there must also be starting points, premises which are agreed to be necessarily true, self-evident, neither capable of, nor standing in need of, further justification. The conception of mathematics as a discipline in which proofs are required must therefore also be a conception of a discipline in which a systematic and hierarchical order is imposed on its various branches. Some propositions appear as first principles, accepted without proof, and others are ordered on the basis of how directly they can be proved from these first principle. Basic theorems, once proved, are then used to prove further results, and so on. Thus there is a sense in which, so long as mathematicians demand and provide proofs, they must necessarily organize their discipline along lines approximating to the pattern to be found in Euclid's Elements." (Mary Tiles,"Mathematics and the Image of Reason" , 1991)

"Because mathematical proofs are long, they are also difficult to invent. One has to construct, without making any mistakes, long chains of assertions, and see what one is doing, see where one is going. To see means to be able to guess what is true and what is false, what is useful and what is not. To see means to have a feeling for which definitions one should introduce, and what the key assertions are that will allow one to develop a theory in a natural manner." (David Ruelle, "Chance and Chaos", 1991)

"Notice also that scientists generally avoid the use of the word proof. Evidence can support a hypothesis or a theory, but it cannot prove a theory to be true. It is always possible that in the future a new idea will provide a better explanation of the evidence." (James E McLaren, "Heath Biology", 1991)

"A mathematician, then, will be defined in what follows as someone who has published the proof of at least one non-trivial theorem." (Jean Dieudonné, "Mathematics and Mathematicians", 1992)

"Science undercuts ethics because we have made science the measure of all things. Truth means truth of science. Truth means logical truth or factual truth. Truth means math proof or data test. The truth can be a matter of degree. But that does not help ethics." (Bart Kosko, "Fuzzy Thinking: The new science of fuzzy logic", 1993)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"Geometrical intuition plays an essential role in contemporary algebro-topological and geometric studies. Many profound scientific mathematical papers devoted to multi-dimensional geometry use intensively the 'visual slang' such as, say, 'cut the surface', 'glue together the strips', 'glue the cylinder', 'evert the sphere' , etc., typical of the studies of two and three-dimensional images. Such a terminology is not a caprice of mathematicians, but rather a 'practical necessity' since its employment and the mathematical thinking in these terms appear to be quite necessary for the proof of technically very sophisticated results.(Anatolij Fomenko, "Visual Geometry and Topology", 1994) 

"A mathematical proof is a chain of logical deductions, all stemming from a small number of initial assumptions ('axioms') and subject to the strict rules of mathematical logic. Only such a chain of deductions can establish the validity of a mathematical law, a theorem. And unless this process has been satisfactorily carried out, no relation - regardless of how often it may have been confirmed by observation - is allowed to become a law. It may be given the status of a hypothesis or a conjecture, and all kinds of tentative results may be drawn from it, but no mathematician would ever base definitive conclusions on it. (Eli Maor, "e: The Story of a Number", 1994)

"Geometrical intuition plays an essential role in contemporary algebro-topological and geometric studies. Many profound scientific mathematical papers devoted to multi-dimensional geometry use intensively the 'visual slang' such as, say, 'cut the surface', 'glue together the strips', 'glue the cylinder', 'evert the sphere' , etc., typical of the studies of two and three-dimensional images. Such a terminology is not a caprice of mathematicians, but rather a 'practical necessity' since its employment and the mathematical thinking in these terms appear to be quite necessary for the proof of technically very sophisticated results." (Anatolij Fomenko, "Visual Geometry and Topology", 1994) 

"Mathematicians apparently don’t generally rely on the formal rules of deduction as they are thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking proofs into intermediate results so that they don’t have to hold too much logic at once. In fact, it is common for excellent mathematicians not even to know the standard formal usage of quantifiers (for all and there exists), yet all mathematicians certainly perform the reasoning that they encode." (William P Thurston, "On Proof and Progress in Mathematics", 1994)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lan, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"Chess players recognize and applaud good play, from a single smart move to a brilliant combination to an entire game which is considered a masterpiece. Mathematicians recognize and applaud good mathematics, from clever tricks to brilliant proofs, and from beautiful conceptions to grand and deep ideas which advance our understanding of mathematics as a whole. It takes imagination and insight to discover the best moves, at chess or mathematics, and the more difficult the position, the harder they are to find. Chess players learn by experience to recognize types of positions and situations and to know what kind of moves are likely to be successful; they exploit brilliant local tactics as well as deep stategical ideas. So do mathematicians. Neither games nor mathematics play themselves - they both need a player with understanding, good ideas, judgement and discrimination to play them. To develop these essential attributes, the player must explore the game by playing it, thinking about it and analysing it. For the chess player and the mathematician, this process is scientific: you test ideas, experiment with new possibilities, develop the ones that work and discard the ones that fail. This is how chess players and mathematicians develop their tactical and strategical understanding; it is how they give meaning to chess and mathematics." (David Wells, "You Are a Mathematician: A wise and witty introduction to the joy of numbers", 1995)

"Mathematics is about theorems: how to find them; how to prove them; how to generalize them; how to use them; how to understand them. […] But great theorems do not stand in isolation; they lead to great theories. […] And great theories in mathematics are like great poems, great paintings, or great literature: it takes time for them to mature and be recognized as being 'great'." (John L Casti, "Five Golden Rules", 1995)

"The ingredient that knits this landscape together is proof. Proof determines the route from one fact to another. To professional mathematicians, no statement is considered valid unless it is proved beyond any possibility of logical error. But there are limits to what can be proved, and how it can be proved. A great deal of work in philosophy and the foundations of mathematics has established that you can't prove everything, because you have to start somewhere; and even when you've decided where to start, some statements may be neither provable nor disprovable." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Venn diagrams are widely used to solve problems in set theory and to test the validity of syllogisms in logic. […] However, it is a fact that Venn diagrams are not considered valid proofs, but heuristic tools for finding valid formal proofs." (Sun-Joo Shin, "Situation-Theoretic Account of Valid Reasoning with Venn Diagrams", [in "Logical Reasoning with Diagrams"], 1996)

"What's so awful about using intuition or using inductive arguments? […] without them we would have virtually no mathematics at all; for, until the last few centuries, mathematics was advanced almost solely by intuition, inductive observation, and arguments designed to compel belief, not by laboured proofs, and certainly not through proofs of the ghastliness required by today's academic journals" (Jon MacKeman, "What's the point of proof?", Mathematics Teaching 155, 1996)

"All things which are proved to be impossible must obviously rest on some assumptions, and when one or more of these assumptions are not true then the impossibility proof fails - but the expert seldom remembers to carefully inspect the assumptions before making their 'impossible' statements." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"The lack of beauty in a piece of mathematics is of frequent occurrence, and it is a strong motivation for further mathematical research. Lack of beauty is associated with lack of definitiveness. A beautiful proof is more often than not the definitive proof (though a definitive proof need not be beautiful); a beautiful theorem is not likely to be improved upon or generalized." (Gian-Carlo Rota, "The phenomenology of mathematical proof", Synthese, 111(2), 1997)

"The most common instance of beauty in mathematics is a brilliant step in an otherwise undistinguished proof. […] A beautiful theorem may not be blessed with an equally beautiful proof; beautiful theorems with ugly proofs frequently occur. When a beautiful theorem is missing a beautiful proof, attempts are made by mathematicians to provide new proofs that will match the beauty of the theorem, with varying success. It is, however, impossible to find beautiful proofs of theorems that are not beautiful.” (Gian-Carlo Rota, “The Phenomenology of Mathematical Beauty”, 1997)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lane, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"[...] the beauty of a piece of mathematics is strongly dependent upon schools and periods of history. A theorem that is in one context thought to be beautiful may in a different context appear trivial. [...] Undoubtedly, many occurrences of mathematical beauty eventually fade or fall into triviality as mathematics progresses." (Gian-Carlo Rota, "The phenomenology of mathematical proof", Synthese, 111(2), 1997)

"In practice, proofs are simply whatever it takes to convince colleagues that a mathematical idea is true." (Claudia Henrion, "Women in Mathematics", 1997)

"The lack of beauty in a piece of mathematics is of frequent occurrence, and it is a strong motivation for further mathematical research. Lack of beauty is associated with lack of definitiveness. A beautiful proof is more often than not the definitive proof (though a definitive proof need not be beautiful); a beautiful theorem is not likely to be improved upon or generalized." (Gian-Carlo Rota, "The phenomenology of mathematical proof", Synthese, 111(2), 1997)

"The most common instance of beauty in mathematics is a brilliant step in an otherwise undistinguished proof. […] A beautiful theorem may not be blessed with an equally beautiful proof; beautiful theorems with ugly proofs frequently occur. When a beautiful theorem is missing a beautiful proof, attempts are made by mathematicians to provide new proofs that will match the beauty of the theorem, with varying success. It is, however, impossible to find beautiful proofs of theorems that are not beautiful." (Gian-Carlo Rota, "The Phenomenology of Mathematical Beauty", Synthese, 111(2), 1997)

"Cleaning up old proofs is an important part of the mathematical enterprise that often yields new insights that can be used to solve new problems and build more beautiful and encompassing theories." (Bruce Schecter, "My Brain is Open", 1998)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Literature: On Prediction (From Fiction to Science Fiction)

"[…] anybody with a genuine system of prediction would be using it, not selling it." (Philip K Dick, "Solar Lottery", 19...