23 June 2019

On Proofs (1990-1999)

"[...] mystery is an inescapable ingredient of mathematics. Mathematics is full of unanswered questions, which far outnumber known theorems and results. It’s the nature of mathematics to pose more problems than it can solve. Indeed, mathematics itself may be built on small islands of truth comprising the pieces of mathematics that can be validated by relatively short proofs. All else is speculation.“ (Ivars Peterson, „Islands of Truth: A Mathematical Mystery Cruise“, 1990)

"A distinctive feature of mathematics, that feature in virtue of which it stands as a paradigmatically rational discipline, is that assertions are not accepted without proof. […] By proof is meant a deductively valid, rationally compelling argument which shows why this must be so, given what it is to be a triangle. But arguments always have premises so that if there are to be any proofs there must also be starting points, premises which are agreed to be necessarily true, self-evident, neither capable of, nor standing in need of, further justification. The conception of mathematics as a discipline in which proofs are required must therefore also be a conception of a discipline in which a systematic and hierarchical order is imposed on its various branches. Some propositions appear as first principles, accepted without proof, and others are ordered on the basis of how directly they can be proved from these first principle. Basic theorems, once proved, are then used to prove further results, and so on. Thus there is a sense in which, so long as mathematicians demand and provide proofs, they must necessarily organize their discipline along lines approximating to the pattern to be found in Euclid's Elements." (Mary Tiles,"Mathematics and the Image of Reason" , 1991) 

"Notice also that scientists generally avoid the use of the word proof. Evidence can support a hypothesis or a theory, but it cannot prove a theory to be true. It is always possible that in the future a new idea will provide a better explanation of the evidence." (James E McLaren, “Heath Biology”, 1991)

"The word theory, as used in the natural sciences, doesn’t mean an idea tentatively held for purposes of argument - that we call a hypothesis. Rather, a theory is a set of logically consistent abstract principles that explain a body of concrete facts. It is the logical connections among the principles and the facts that characterize a theory as truth. No one element of a theory [...] can be changed without creating a logical contradiction that invalidates the entire system. Thus, although it may not be possible to substantiate directly a particular principle in the theory, the principle is validated by the consistency of the entire logical structure." (Alan Cromer, "Uncommon Sense: The Heretical Nature of Science", 1993)

"A mathematical proof is a chain of logical deductions, all stemming from a small number of initial assumptions ('axioms') and subject to the strict rules of mathematical logic. Only such a chain of deductions can establish the validity of a mathematical law, a theorem. And unless this process has been satisfactorily carried out, no relation - regardless of how often it may have been confirmed by observation - is allowed to become a law. It may be given the status of a hypothesis or a conjecture, and all kinds of tentative results may be drawn from it, but no mathematician would ever base definitive conclusions on it. (Eli Maor, "e: The Story of a Number", 1994)

“Mathematicians apparently don’t generally rely on the formal rules of deduction as they are thinking. Rather, they hold a fair bit of logical structure of a proof in their heads, breaking proofs into intermediate results so that they don’t have to hold too much logic at once. In fact, it is common for excellent mathematicians not even to know the standard formal usage of quantifiers (for all and there exists), yet all mathematicians certainly perform the reasoning that they encode.” (William P Thurston, “On Proof and Progress in Mathematics”, 1994)

"Mathematics is about theorems: how to find them; how to prove them; how to generalize them; how to use them; how to understand them. […] But great theorems do not stand in isolation; they lead to great theories. […] And great theories in mathematics are like great poems, great paintings, or great literature: it takes time for them to mature and be recognized as being 'great'." (John L Casti, "Five Golden Rules", 1995)

"The ingredient that knits this landscape together is proof. Proof determines the route from one fact to another. To professional mathematicians, no statement is considered valid unless it is proved beyond any possibility of logical error. But there are limits to what can be proved, and how it can be proved. A great deal of work in philosophy and the foundations of mathematics has established that you can't prove everything, because you have to start somewhere; and even when you've decided where to start, some statements may be neither provable nor disprovable." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

“What's so awful about using intuition or using inductive arguments? […] without them we would have virtually no mathematics at all; for, until the last few centuries, mathematics was advanced almost solely by intuition, inductive observation, and arguments designed to compel belief, not by laboured proofs, and certainly not through proofs of the ghastliness required by today's academic journals” (Jon MacKeman, “What's the point of proof?”, Mathematics Teaching 155, 1996)

"The lack of beauty in a piece of mathematics is of frequent occurrence, and it is a strong motivation for further mathematical research. Lack of beauty is associated with lack of definitiveness. A beautiful proof is more often than not the definitive proof (though a definitive proof need not be beautiful); a beautiful theorem is not likely to be improved upon or generalized." (Gian-Carlo Rota, "The phenomenology of mathematical proof", Synthese, 111(2), 1997)

"The most common instance of beauty in mathematics is a brilliant step in an otherwise undistinguished proof. […] A beautiful theorem may not be blessed with an equally beautiful proof; beautiful theorems with ugly proofs frequently occur. When a beautiful theorem is missing a beautiful proof, attempts are made by mathematicians to provide new proofs that will match the beauty of the theorem, with varying success. It is, however, impossible to find beautiful proofs of theorems that are not beautiful.” (Gian-Carlo Rota, “The Phenomenology of Mathematical Beauty”, 1997)

"The sequence for the understanding of mathematics may be: intuition, trial, error, speculation, conjecture, proof. The mixture and the sequence of these events differ widely in different domains, but there is general agreement that the end product is rigorous proof – which we know and can recognize, without the formal advice of the logicians. […] Intuition is glorious, but the heaven of mathematics requires much more. Physics has provided mathematics with many fine suggestions and new initiatives, but mathematics does not need to copy the style of experimental physics. Mathematics rests on proof - and proof is eternal." (Saunders Mac Lane, "Reponses to …", Bulletin of the American Mathematical Society Vol. 30 (2), 1994)

"In practice, proofs are simply whatever it takes to convince colleagues that a mathematical idea is true." (Claudia Henrion, "Women in Mathematics", 1997)

"Cleaning up old proofs is an important part of the mathematical enterprise that often yields new insights that can be used to solve new problems and build more beautiful and encompassing theories." (Bruce Schecter, "My Brain is Open", 1998)

See also:
Proofs I, II, III, IV, V, VI, VIII, IX
Theorems I, II, III, IV, V, VI, VII, VIII, IX, X

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...