17 June 2019

On Truth (2000-2009)

“Mathematics is not placid, static and eternal. […] Most mathematicians are happy to make use of those axioms in their proofs, although others do not, exploring instead so-called intuitionist logic or constructivist mathematics. Mathematics is not a single monolithic structure of absolute truth!” (Gregory J Chaitin, “A century of controversy over the foundations of mathematics”, 2000)

"That a proof must be convincing is part of the anthropology of mathematics, providing the key to understanding mathematics as a human activity. We invoke the logic of mathematics when we demand that every informal proof be capable of being formalized within the confines of a definite formal system. Finally, the epistemology of mathematics comes into play with the requirement that a proof be surveyable. We can't really say that we have created a genuine piece of knowledge unless it can be examined and verified by others; there are no private truths in mathematics.(John L Casti, "Mathematical Mountaintops: The Five Most Famous Problems of All Time", 2001)

"While mathematical truth is the aim of inquiry, some falsehoods seem to realize this aim better than others; some truths better realize the aim than other truths and perhaps even some falsehoods realize the aim better than some truths do. The dichotomy of the class of propositions into truths and falsehoods should thus be supplemented with a more fine-grained ordering - one which classifies propositions according to their closeness to the truth, their degree of truth-likeness or verisimilitude. The problem of truth-likeness is to give an adequate account of the concept and to explore its logical properties and its applications to epistemology and methodology." (Graham Oddie, "Truth-likeness", Stanford Encyclopedia of Philosophy, 2001)

"Where we find certainty and truth in mathematics we also find beauty. Great mathematics is characterized by its aesthetics. Mathematicians delight in the elegance, economy of means, and logical inevitability of proof. It is as if the great mathematical truths can be no other way. This light of logic is also reflected back to us in the underlying structures of the physical world through the mathematics of theoretical physics." (F David Peat, "From Certainty to Uncertainty", 2002)

“Solving a problem for which you know there’s an answer is like climbing a mountain with a guide, along a trail someone else has laid. In mathematics, the truth is somewhere out there in a place no one knows, beyond all the beaten paths. And it’s not always at the top of the mountain. It might be in a crack on the smoothest cliff or somewhere deep in the valley.” (Yōko Ogawa, "The Housekeeper and the Professor", 2003)

“A model is a simplification or approximation of reality and hence will not reflect all of reality. […] Box noted that ‘all models are wrong, but some are useful’. While a model can never be ‘truth’, a model might be ranked from very useful, to useful, to somewhat useful to, finally, essentially useless.” (Kenneth P Burnham & David R Anderson, “Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach” 2nd Ed., 2005)

"It is art which invents the lies that raise falsehood to its highest affirmative power, that turns the will to deceive into something which is affirmed in the power of falsehood. For the artist, appearance no longer means the negation of the real in this world but this kind of selection, correction, redoubling and affirmation. Then truth perhaps takes on a new sense. Truth is appearance." (Gilles Deleuze, "Nietzsche as Philosopher", 2005)

“Human language is a vehicle of truth but also of error, deception, and nonsense. Its use, as in the present discussion, thus requires great prudence. One can improve the precision of language by explicit definition of the terms used. But this approach has its limitations: the definition of one term involves other terms, which should in turn be defined, and so on. Mathematics has found a way out of this infinite regression: it bypasses the use of definitions by postulating some logical relations (called axioms) between otherwise undefined mathematical terms. Using the mathematical terms introduced with the axioms, one can then define new terms and proceed to build mathematical theories. Mathematics need, not, in principle rely on a human language. It can use, instead, a formal presentation in which the validity of a deduction can be checked mechanically and without risk of error or deception.“ (David Ruelle, “The Mathematician's Brain”, 2007)

"It is proof that is our device for establishing the absolute and irrevocable truth of statements in our subject.” (Steven G Krantz, "The History and Concept of Mathematical", 2007)

“Mathematics is about truth: discovering the truth, knowing the truth, and communicating the truth to others. It would be a great mistake to discuss mathematics without talking about its relation to the truth, for truth is the essence of mathematics. In its search for the purity of truth, mathematics has developed its own language and methodologies - its own way of paring down reality to an inner essence and capturing that essence in subtle patterns of thought. Mathematics is a way of using the mind with the goal of knowing the truth, that is, of obtaining certainty.” (William Byers, “How Mathematicians Think”, 2007)

“Geometrical truth is (as we now speak) synthetic: it states facts about the world. Such truths are not ordinary truths but essential truths, giving the reality of the empirical world in which they are imperfect embodied.” (Fred Wilson, “The External World and Our Knowledge of It”, 2008)

"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’.” (Vladimir G Ivancevic & Tijana T Ivancevic, “Quantum Leap”, 2008)

"Mathematicians, like priests, seek ‘ideal’, immutable truths and then often try to apply these truths to the real world." (Clifford A Pickover, "The Loom of God: Tapestries of Mathematics and Mysticism", 2009)

"Philosophers have sometimes made a distinction between analytic and synthetic truths. Analytic truths are not verified by observation; true analytic statements are tautologies and are true by virtue of the definitions of their terms and their logical structure. Synthetic truths relate to the material world; the truth of synthetic statements depends on their correspondence to how physical reality works. Mathematics, according to this distinction, deals exclusively with analytic truths. Its statements are all tautologies and are (analytically) true by virtue of their adherence to formal rules of construction." (Raymond S Nickerson, "Mathematical Reasoning: Patterns, Problems, Conjectures, and Proofs", 2009)

"There is an absolute nature to truth in mathematics, which is unmatched in any other branch of knowledge. A theorem, once proven, requires independent checking but not repetition or independent derivation to be accepted as correct. […] Truth in mathematics is totally dependent on pure thought, with no component of data to be added. This is unique. Associated with truth in mathematics is an absolute certainty in its validity” (James Glimm, "Reflections and Prospectives", 2009)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...