"A valid scientific theory seldom if ever offers the solution to the pressing problems which we repeatedly state. It seldom supplies a sensible answer to our multitudinous questions. Rather than rationalizing our ideas, it discards them entirely, or, rather, it leaves them as they were. It tells us in a fresh and new way what aspects of our experience can profitably be related and simply understood." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)
"The ideas and assumptions of a theory determine the generalityof the theory, that is, to how wide a range of phenomena the theory applies." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)
"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)
"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)
"The principal aim of physical theories is understanding. A theory's ability to find a number is merely a useful criterion for a correct understanding." (Yuri I Manin, "Mathematics and Physics", 1981)
"Facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts. Facts do not go away while scientists debate rival theories for explaining them." (Stephen J Gould "Evolution as Fact and Theory", 1981)
"A real change of theory is not a change of equations - it is a change of mathematical structure, and only fragments of competing theories, often not very important ones conceptually, admit comparison with each other within a limited range of phenomena." (Yuri I Manin, "Mathematics and Physics", 1981)
"The principal aim of physical theories is understanding. A theory's ability to find a number is merely a useful criterion for a correct understanding." (Yuri I Manin, "Mathematics and Physics", 1981)
"When a theory is sufficiently general to cover many fields of application, it acquires some 'truth' from each of them. Thus [...] a positive value for generalization in mathematics." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)
"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance [...]" (George Greenstein, "Frozen Star", 1983)
“In all scientific fields, theory is frequently more important than experimental data. Scientists are generally reluctant to accept the existence of a phenomenon when they do not know how to explain it. On the other hand, they will often accept a theory that is especially plausible before there exists any data to support it.” (Richard Morris, 1983)
"Physics is like that. It is important that the models we construct allow us to draw the right conclusions about the behaviour of the phenomena and their causes. But it is not essential that the models accurately describe everything that actually happens; and in general it will not be possible for them to do so, and for much the same reasons. The requirements of the theory constrain what can be literally represented. This does not mean that the right lessons cannot be drawn. Adjustments are made where literal correctness does not matter very much in order to get the correct effects where we want them; and very often, as in the staging example, one distortion is put right by another. That is why it often seems misleading to say that a particular aspect of a model is false to reality: given the other constraints that is just the way to restore the representation." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)
"Scientific theories must tell us both what is true in nature, and how we are to explain it. […] Scientific theories are thought to explain by dint of the descriptions they give of reality." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)
“The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases.” (Paul Halmos, “Selecta: Expository writing”, 1983)
“Until now, physical theories have been regarded as merely models with approximately describe the reality of nature. As the models improve, so the fit between theory and reality gets closer. Some physicists are now claiming that supergravity is the reality, that the model and the real world are in mathematically perfect accord.” (Paul C W Davies, “Superforce”, 1984)
“Nature is disordered, powerful and chaotic, and through fear of the chaos we impose system on it. We abhor complexity, and seek to simplify things whenever we can by whatever means we have at hand. We need to have an overall explanation of what the universe is and how it functions. In order to achieve this overall view we develop explanatory theories which will give structure to natural phenomena: we classify nature into a coherent system which appears to do what we say it does.” (James Burke, “The Day the Universe Changed”, 1985)
”Experience without theory teaches nothing.” (William E Deming, “Out of the Crisis”, 1986)
"Most people like to believe something is or is not true. Great scientists tolerate ambiguity very well. They believe the theory enough to go ahead; they doubt it enough to notice the errors and faults so they can step forward and create the new replacement theory. If you believe too much you'll never notice the flaws; if you doubt too much you won't get started. It requires a lovely balance." (Richard W Hamming, "You and Your Research", 1986)
“All great theories are expansive, and all notions so rich in scope and implication are underpinned by visions about the nature of things. You may call these visions ‘philosophy’, or ‘metaphor’, or ‘organizing principle’, but one thing they are surely not - they are not simple inductions from observed facts of the natural world.” (Stephen J Gould, “Time’s Arrow, Time’s Cycle”, 1987)
"Facts do not 'speak for themselves'. They speak for or against competing theories. Facts divorced from theory or visions are mere isolated curiosities." (Thomas Sowell, "A Conflict of Visions: Ideological Origins of Political Struggles", 1987)
“[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion.” (Francis H C Crick, “What Mad Pursuit: A Personal View of Scientific Discovery”, 1988)
“Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory.” (Stephen Hawking, “A Brief History of Time”, 1988)
“Theories are not so much wrong as incomplete." (Isaac Asimov, "The Relativity of Wrong", 1988)
”A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted.” (James R Oppenheimer, “Atom and Void”, 1989)
"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)
“All great theories are expansive, and all notions so rich in scope and implication are underpinned by visions about the nature of things. You may call these visions ‘philosophy’, or ‘metaphor’, or ‘organizing principle’, but one thing they are surely not - they are not simple inductions from observed facts of the natural world.” (Stephen J Gould, “Time’s Arrow, Time’s Cycle”, 1987)
"Facts do not 'speak for themselves'. They speak for or against competing theories. Facts divorced from theory or visions are mere isolated curiosities." (Thomas Sowell, "A Conflict of Visions: Ideological Origins of Political Struggles", 1987)
“[…] no good model ever accounted for all the facts, since some data was bound to be misleading if not plain wrong. A theory that did fit all the data would have been ‘carpentered’ to do this and would thus be open to suspicion.” (Francis H C Crick, “What Mad Pursuit: A Personal View of Scientific Discovery”, 1988)
“Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory.” (Stephen Hawking, “A Brief History of Time”, 1988)
“Theories are not so much wrong as incomplete." (Isaac Asimov, "The Relativity of Wrong", 1988)
”A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted.” (James R Oppenheimer, “Atom and Void”, 1989)
"Model is used as a theory. It becomes theory when the purpose of building a model is to understand the mechanisms involved in the developmental process. Hence as theory, model does not carve up or change the world, but it explains how change takes place and in what way or manner. This leads to build change in the structures." (Laxmi K Patnaik, "Model Building in Political Science", The Indian Journal of Political Science Vol. 50 (2), 1989)
"Scientific theories can always be improved and are improved. That is one of the glories of science. It is the authoritarian view of the Universe that is frozen in stone and cannot be changed, so that once it is wrong, it is wrong forever." (Isaac Asimov, "The Nearest Star", 1989)
No comments:
Post a Comment