26 December 2019

Edward Beltrami - Collected Quotes

“One of the features that distinguishes applied mathematics is its interest in framing important questions about the observed world in a mathematical way. This process of translation into a mathematical form can give a better handle for certain problems than would be otherwise possible. We call this the modeling process. It combines formal reasoning with intuitive insights. Understanding the models devised by others is a first step in learning some of the skills involved, and that is how we proceed in this text, which is an informal introduction to the mathematics of dynamical systems.” (Edward Beltrami, “Mathematics for Dynamic Modeling”, 1987)

"The essence of modeling, as we see it, is that one begins with a nontrivial word problem about the world around us. We then grapple with the not always obvious problem of how it can be posed as a mathematical question. Emphasis is on the evolution of a roughly conceived idea into a more abstract but manageable form in which inessentials have been eliminated. One of the lessons learned is that there is no best model, only better ones."  (Edward Beltrami, “Mathematics for Dynamic Modeling”, 1987)

"The model is only a suggestive metaphor, a fiction about the messy and unwieldy observations of the real world. In order for it to be persuasive, to convey a sense of credibility, it is important that it not be too complicated and that the assumptions that are made be clearly in evidence. In short, the model must be simple, transparent, and verifiable." (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)

"Let us regard a proof of an assertion as a purely mechanical procedure using precise rules of inference starting with a few unassailable axioms. This means that an algorithm can be devised for testing the validity of an alleged proof simply by checking the successive steps of the argument; the rules of inference constitute an algorithm for generating all the statements that can be deduced in a finite number of steps from the axioms." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"It is part of the lore of science that the most parsimonious explanation of observed facts is to be preferred over convoluted and long-winded theories. Ptolemaic epicycles gave way to the Copernican system largely on this premise, and in general, scientific inquiry is governed by the oft-quoted dictum of the medieval cleric William of Occam that 'nunquam ponenda est pluralitas sine necesitate' , which may be paraphrased as 'choose the simplest explanation for the observed facts' ." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"Randomness is the very stuff of life, looming large in our everyday experience. […] The fascination of randomness is that it is pervasive, providing the surprising coincidences, bizarre luck, and unexpected twists that color our perception of everyday events." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"That randomness gives rise to innovation and diversity in nature is echoed by the notion that chance is also the source of invention in the arts and everyday affairs in which naturally occurring processes are balanced between tight organization, where redundancy is paramount, and volatility, in which little order is possible. One can argue that there is a difference in kind between the unconscious, and sometimes conscious, choices made by a writer or artist in creating a string of words or musical notes and the accidental succession of events taking place in the natural world. However, it is the perception of ambiguity in a string that matters, and not the process that generated it, whether it be man-made or from nature at large." (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The subject of probability begins by assuming that some mechanism of uncertainty is at work giving rise to what is called randomness, but it is not necessary to distinguish between chance that occurs because of some hidden order that may exist and chance that is the result of blind lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each individually unpredictable, or it conspires to produce an unforeseeable outcome each time a large ensemble of possibilities is sampled."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"The first view of randomness is of clutter bred by complicated entanglements. Even though we know there are rules, the outcome is uncertain. Lotteries and card games are generally perceived to belong to this category. More troublesome is that nature's design itself is known imperfectly, and worse, the rules may be hidden from us, and therefore we cannot specify a cause or discern any pattern of order. When, for instance, an outcome takes place as the confluence of totally unrelated events, it may appear to be so surprising and bizarre that we say that it is due to blind chance." (Edward Beltrami. "What is Random?: Chance and Order in Mathematics and Life", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...