"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)
"A […] difference between most system-building in the social sciences and systems of thought and classification of the natural sciences is to be seen in their evolution. In the natural sciences both theories and descriptive systems grow by adaptation to the increasing knowledge and experience of the scientists. In the social sciences, systems often issue fully formed from the mind of one man. Then they may be much discussed if they attract attention, but progressive adaptive modification as a result of the concerted efforts of great numbers of men is rare." (Lawrence J Henderson, "The Study of Man", 1941)
"A serious threat to the very life of science is implied in the assertion that mathematics is nothing but a system of conclusions drawn from definitions and postulates that must be consistent but otherwise may be created by the free will of the mathematician. If this description were accurate, mathematics could not attract any intelligent person. It would be a game with definitions, rules and syllogisms, without motivation or goal." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)
"Mathematicians deal with possible worlds, with an infinite number of logically consistent systems. Observers explore the one particular world we inhabit. Between the two stands the theorist. He studies possible worlds but only those which are compatible with the information furnished by observers. In other words, theory attempts to segregate the minimum number of possible worlds which must include the actual world we inhabit. Then the observer, with new factual information, attempts to reduce the list further. And so it goes, observation and theory advancing together toward the common goal of science, knowledge of the structure and observation of the universe." (Edwin P Hubble, "The Problem of the Expanding Universe", 1941)
"Science is the organised attempt of mankind to discover how things work as causal systems. The scientific attitude of mind is an interest in such questions. It can be contrasted with other attitudes, which have different interests; for instance the magical, which attempts to make things work not as material systems but as immaterial forces which can be controlled by spells; or the religious, which is interested in the world as revealing the nature of God." (Conrad H Waddington, "The Scientific Attitude", 1941)
"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)
"The first implication of the principle of immanent change may be formulated as follows: As long as it exists and functions, any sociocultural system incessantly generates consequences which are not the results of the external factors to the system, but the consequences of the existence of the system and of its activities." (Pitirim A Sorokin, "Social and Cultural Dynamics" Vol. 4, 1937-1941)
"The notion that the intellect can create meaningful postulational systems at its whim is a deceptive half-truth. Only under the discipline of responsibility to the organic whole, only guided by intrinsic necessity, can the free mind achieve results of scientific value." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)
"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)
"By a model we thus mean any physical or chemical system which has a similar relation-structure to that of the process it imitates. By ’relation-structure’ I do not mean some obscure non-physical entity which attends the model, but the fact that it is a physical working model which works in the same way as the process it parallels, in the aspects under consideration at any moment." (Kenneth Craik, "The Nature of Explanation", 1943)
"Our theory has some bleaker consequences. [...] What is knowledge, if we are but a part of the mechanical system of the world we seek to know? What becomes of our ceaseless effort to explain the universe we live in, if explanation is but a part of the mechanical process?" (Kenneth Craik, "The Nature of Explanation", 1943)
"Classes and concepts may, however, also be conceived as real objects, namely classes as 'pluralities of things' or as structures consisting of a plurality of things and concepts as the properties and relations of things existing independently of our definitions and constructions. It seems to me that the assumption of such objects is quite as legitimate as the assumption of physical bodies and there is quite as much reason to believe in their existence. They are in the same sense necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions." (Kurt Gödel, "The Philosophy of Bertrand Russell", 1944)
"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)
"A system is defined as any combination of matter that we wish to study." (Earl B Millard, "Physical Chemistry for Colleges: A course of instruction", 1946)
"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I, 1947])
"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)
"Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all." (Norbert Wiener, "The Human Use of Human Beings", 1949)
"The notion that the intellect can create meaningful postulational systems at its whim is a deceptive half-truth. Only under the discipline of responsibility to the organic whole, only guided by intrinsic necessity, can the free mind achieve results of scientific value." (Richard Courant & Herbert Robbins, "What Is Mathematics?", 1941)
"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)
"By a model we thus mean any physical or chemical system which has a similar relation-structure to that of the process it imitates. By ’relation-structure’ I do not mean some obscure non-physical entity which attends the model, but the fact that it is a physical working model which works in the same way as the process it parallels, in the aspects under consideration at any moment." (Kenneth Craik, "The Nature of Explanation", 1943)
"Our theory has some bleaker consequences. [...] What is knowledge, if we are but a part of the mechanical system of the world we seek to know? What becomes of our ceaseless effort to explain the universe we live in, if explanation is but a part of the mechanical process?" (Kenneth Craik, "The Nature of Explanation", 1943)
"Classes and concepts may, however, also be conceived as real objects, namely classes as 'pluralities of things' or as structures consisting of a plurality of things and concepts as the properties and relations of things existing independently of our definitions and constructions. It seems to me that the assumption of such objects is quite as legitimate as the assumption of physical bodies and there is quite as much reason to believe in their existence. They are in the same sense necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions." (Kurt Gödel, "The Philosophy of Bertrand Russell", 1944)
"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)
"A system is defined as any combination of matter that we wish to study." (Earl B Millard, "Physical Chemistry for Colleges: A course of instruction", 1946)
"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I, 1947])
"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)
"Scientific discovery consists in the interpretation for our own convenience of a system of existence which has been made with no eye to our convenience at all." (Norbert Wiener, "The Human Use of Human Beings", 1949)
No comments:
Post a Comment