29 December 2019

On Systems (1930-1939)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"Mathematics and poetry lie, if not on, at least not far from the extremes, the one of systematic and the other of unsystematic thought, and thus are about as far removed as possible one from the other." (Robert D Carmichael, "The Logic of Discovery", 1930)

"The chain of cause and effect could be quantitatively verified only if the whole universe were considered as a single system - but then physics has vanished, and only a mathematical scheme remains. The partition of the world into observing and observed system prevents a sharp formulation of the law of cause and effect." (Werner K Heisenberg, "The Physical Principles of the Quantum Theory", 1930)

"When an observation is made on any atomic system that has been prepared in a given way and is thus in a given state, the result will not in general be determinate, i.e. if the experiment is repeated several times under identical conditions several different results may be obtained. If the experiment is repeated a large number of times it will be found that each particular result will be obtained a definite fraction of the total number of times, so that one can say there is a definite probability of its being obtained any time that the experiment is performed. This probability the theory enables one to calculate." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"A cell of a higher organism contains a thousand different substances, arranged in a complex system. This great organized system was not discovered by chemical or physical methods; they are inadequate to its refinement and delicacy and complexity." (Herbert S Jennings, "The Cell in Relation to its Environment", Journal of the Maryland Academy of Sciences, 1931)

"Postulate 1. All chance systems of causes are not alike in the sense that they enable us to predict the future in terms of the past. Postulate 2. Constant systems of chance causes do exist in nature. Postulate 3. Assignable causes of variation may be found and eliminated."(Walter A Shewhart, "Economic Control of Quality of Manufactured Product", 1931)

"Science works by the slow method of the classification of data, arranging the detail patiently in a periodic system into groups of facts, in series like the strata of the rocks. For each series there must be a vocabulary of special words which do not always make good sense when used in another series. But the laws of periodicity seem to hold throughout, among the elements and in every sphere of thought, and we must learn to co-ordinate the whole through our new conception of the reign of relativity." (William H Pallister, "Poems of Science", 1931)

"The development of mathematics toward greater precision has led, as is well known, to the formalization of large tracts of it, so that one can prove any theorem using nothing but a few mechanical rules.[...] One might therefore conjecture that these axioms and rules of inference are sufficient to decide any mathematical question that can at all be formally expressed in these systems. It will be shown below that this is not the case, that on the contrary there are in the two systems mentioned relatively simple problems in the theory of integers that cannot be decided on the basis of the axioms." (Kurt Gödel, "On Formally Undecidable Propositions of Principia Mathematica and Related Systems", 1931)

"To apply the category of cause and effect means to find out which parts of nature stand in this relation. Similarly, to apply the gestalt category means to find out which parts of nature belong as parts to functional wholes, to discover their position in these wholes, their degree of relative independence, and the articulation of larger wholes into sub-wholes." (Kurt Koffka, 1931)

"In fact 'engineering' now often signifies a new system of thought, a fresh method of attack upon the world’s problems the antithesis of traditionalism, with its precedents and dogmas." (Alfred D Flinn, "Leadership in Economic Progress", Civil Engineering Vol. 2 (4), 1932)

"No doctrinal system in physical science, or indeed perhaps in any science, will alter its content of its own accord. Here we always need the pressure of outer circumstances. Indeed the more intelligible and comprehensive a theoretical system is the more obstinately it will resist all attempts at reconstruction or expansion."  (Max Planck, "Where is Science Going?", 1932)

"Systems, scientific and philosophic, come and go. Each method of limited understanding is at length exhausted. In its prime each system is a triumphant success: in its decay it is an obstructive nuisance." (Alfred N Whitehead, "Adventures of Ideas", 1933) 

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"A system such as classical mechanics may be 'scientific' to any degree you like; but those who uphold it dogmatically - believing, perhaps, that it is their business to defend such a successful system against criticism as long as it is not conclusively disproved - are adopting the very reverse of that critical attitude which in my view is the proper one for the scientist." (Karl R Popper, "The Logic of Scientific Discovery", 1934) 

"But I shall certainly admit a system as empirical or scientific only if it is capable of being tested by experience. These considerations suggest that not the verifiability but the falsifiability of a system is to be taken as a criterion of demarcation. In other words: I shall not require of a scientific system that it shall be capable of being singled out, once and for all, in a positive sense; but I shall require that its logical form shall be such that it can be singled out, by means of empirical tests, in a negative sense: it must be possible for an empirical scientific system to be refuted by experience." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"I think that we shall have to get accustomed to the idea that we must not look upon science as a 'body of knowledge,' but rather as a system of hypotheses; that is to say, as a system of guesses or anticipations which in principle cannot be justified, but with which we work as long as they stand up to tests, and of which we are never justified in saying that we know they are 'true' or 'more or less certain' or even 'probable’." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Modern positivists are apt to see more clearly that science is not a system of concepts but rather a system of statements." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements." (Rudolf Carnap, "The Unity of Science", 1934)

"What is the inner secret of mathematical power? Briefly stated, it is that mathematics discloses the skeletal outlines of all closely articulated relational systems. For this purpose mathematics uses the language of pure logic with its score or so of symbolic words, which, in its important forms of expression, enables the mind to comprehend systems of relations otherwise completely beyond its power. These forms are creative discoveries which, once made, remain permanently at our disposal. By means of them the scientific imagination is enabled to penetrate ever more deeply into the rationale of the universe about us." (George D Birkhoff, "Mathematics: Quantity and Order", 1934)

"Given a situation, a system with a Leerstelle [a gap], whether a given completion (Lueckenfuellung) does justice to the structure, is the 'right' one, is often determined by the structure of the system, the situation. There are requirements, structurally determined; there are possible in pure cases unambiguous decisions as to which completion does justice to the situation, which does not, which violates the requirements and the situation." (Max Wertheimer, "Some Problems in the Theory of Ethics", Social Research Vol. 2 (3), 1935)

"Maximal knowledge of a total system does not necessarily include total knowledge of all its parts, not even when these are fully separated from each other and at the moment are not influencing each other at all. Thus it may be that some part of what one knows may pertain to relations […] between the two subsystems (we shall limit ourselves to two), as follows: if a particular measurement on the first system yields this result, then for a particular measurement on the second the valid expectation statistics are such and such; but if the measurement in question on the first system should have that result, then some other expectation holds for that one the second. […] In this way, any measurement process at all or, what amounts to the same, any variable at all of the second system can be tied to the not-yet-known value of any variable at all of the first, and of course vice versa also." (Erwin Schrödinger, "The Present Situation in Quantum Mechanics", 1935)

"We love to discover in the cosmos the geometrical forms that exist in the depths of our consciousness. The exactitude of the proportions of our monuments and the precision of our machines express a fundamental character of our mind. Geometry does not exist in the earthly world. It has originated in ourselves. The methods of nature are never so precise as those of man. We do not find in the universe the clearness and accuracy of our thought. We attempt, therefore, to abstract from the complexity of phenomena some simple systems whose components bear to one another certain relations susceptible of being described mathematically." (Alexis Carrel, "Man the Unknown", 1935)

"A scientifically unimportant discovery is one which, however true and however interesting for other reasons, has no consequences for a system of theory with which scientists in that field are concerned." (Talcott Parsons, "The Structure of Social Action", 1937)

"At the beginning of its existence as a science, biology was forced to take cognizance of the seemingly boundless variety of living things, for no exact study of life phenomena was possible until the apparent chaos of the distinct kinds of organisms had been reduced to a rational system. Systematics and morphology, two predominantly descriptive and observational disciplines, took precedence among biological sciences during the eighteenth and nineteenth centuries. More recently physiology has come to the foreground, accompanied by the introduction of quantitative methods and by a shift from the observationalism of the past to a predominance of experimentation." (Theodosius Dobzhansky, "Genetics and the Origin of Species", 1937)

"Given any domain of thought in which the fundamental objective is a knowledge that transcends mere induction or mere empiricism, it seems quite inevitable that its processes should be made to conform closely to the pattern of a system free of ambiguous terms, symbols, operations, deductions; a system whose implications and assumptions are unique and consistent; a system whose logic confounds not the necessary with the sufficient where these are distinct; a system whose materials are abstract elements interpretable as reality or unreality in any forms whatsoever provided only that these forms mirror a thought that is pure. To such a system is universally given the name Mathematics." (Samuel T. Sanders, "Mathematics", National Mathematics Magazine, 1937)

"[…] in the world of immediate experience, the world of things is there. Trees grow, day follows night, and death supervenes upon life. One may not say that relations here are external or even internal. They are not relations at all. They are lost in the indescriptibility of things and events, which are what they are. The world which is the test of all observations and all scientific hypothetical reconstruction has in itself no system that can be isolated as a structure of laws, or uniformities, though all laws and formulations of uniformities must be brought to its court for its imprimatur." (Donald C May & George H Mead, "The Philosophy of the Act", 1938)

"[…] that all science is merely a game can be easily discarded as a piece of wisdom too easily come by. But it is legitimate to enquire whether science is not liable to indulge in play within the closed precincts of its own method. Thus, for instance, the scientist’s continuous penchant for systems tends in the direction of play." (Johan Huizinga, "Homo Ludens", 1938)

 "Let us now discuss the extent of the mathematical quality in Nature. According to the mechanistic scheme of physics or to its relativistic modification, one needs for the complete description of the universe not merely a complete system of equations of motion, but also a complete set of initial conditions, and it is only to the former of these that mathematical theories apply. The latter are considered to be not amenable to theoretical treatment and to be determinable only from observation." (Paul A M Dirac, "The Relation Between Mathematics And Physics", Proceedings of the Royal Society of Edinburgh”, 1938-1939)

"In every writer on philosophy there is a concealed metaphysic, usually unconscious; even if his subject is metaphysics, he is almost certain to have an uncritically believed system which underlies his specific arguments." (Bertrand Russell, "Dewey’s New Logic" [in "The Philosophy of John Dewey", ed. by Paul A Schilpp & Lewis E Hahn, 1939])

"[…] reality is a system, completely ordered and fully intelligible, with which thought in its advance is more and more identifying itself. We may look at the growth of knowledge […] as an attempt by our mind to return to union with things as they are in their ordered wholeness. […] and if we take this view, our notion of truth is marked out for us. Truth is the approximation of thought to reality […] Its measure is the distance thought has travelled […] toward that intelligible system […] The degree of truth of a particular proposition is to be judged in the first instance by its coherence with experience as a whole, ultimately by its coherence with that further whole, all comprehensive and fully articulated, in which thought can come to rest." (Brand Blanshard, "The Nature of Thought" Vol. II, 1939)

"When a transfer of matter to or from a system is also possible, the system may be called an open system." (Frank H MacDougall, "Thermodynamics and chemistry", ‎1939)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Alexander von Humboldt - Collected Quotes

"Whatever relates to extent and quantity may be represented by geometrical figures. Statistical projections which speak to the senses w...