"Reasoning from analogy is often most plausible and most deceptive." (Charles Simmons, "A Laconic Manual and Brief Remarker", 1852)
"In order to obtain physical ideas without adopting a physical theory we must make ourselves familiar with the existence of physical analogies. By a physical analogy I mean that partial similarity between the laws of one science and those of another which makes each of them illustrate the other. Thus all the mathematical sciences are founded on relations between physical laws and laws of numbers, so that the aim of exact science is to reduce the problems of nature to the determination of quantities by operations with numbers." (James C Maxwell, "On Faraday's Lines of Force", 1856)
"Now there are subjects upon which the most sober and practical minds cannot help speculating a little beyond what they know. Sure and great results - yet familiar and common and procured at will and by certain means, but in an unaccountable manner - naturally set us thinking and forming notion: how they come to pas ; and then it is safest and best to fill up the gaps of our knowledge from analogy." (Peter M Latham, "General Remarks on the Practice of Medicine", 1861)
"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)
"Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain." (James J Sylvester, "A Plea for the Mathematician", Nature Vol. 1, 1870)
"[…] the world is full of hopeful analogies and handsome dubious eggs called possibilities.” (Mary A E Cross [George Eliot], “Middlemarch”, 1872)
"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notations, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"Summing up, then, it would seem as if the mind of the great discoverer must combine contradictory attributes. He must be fertile in theories and hypotheses, and yet full of facts and precise results of experience. He must entertain the feeblest analogies, and the merest guesses at truth, and yet he must hold them as worthless till they are verified in experiment. When there are any grounds of probability he must hold tenaciously to an old opinion, and yet he must be prepared at any moment to relinquish it when a clearly contradictory fact is encountered." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"The scientific discovery appears first as the hypothesis of an analogy; and science tends to become independent of the hypothesis." (William K Clifford, "Lectures and Essays", 1879)
"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)
"Most surprising and far-reaching analogies revealed themselves between apparently quite disparate natural processes. It seemed that nature had built the most various things on exactly the same pattern; or, in the dry words of the analyst, the same differential equations hold for the most various phenomena. (Ludwig Boltzmann, "On the methods of theoretical physics", 1892)
"How awkward is the human mind in divining the nature of things, when forsaken by the analogy of what we see and touch directly?" (Ludwig Boltzmann, Certain Questions of the Theory of Gasses", Nature Vol. 51 (1322), 1895)
"If men of science owe anything to us, we may learn much from them that is essential. For they can show how to test proof, how to secure fulness and soundness in induction, how to restrain and to employ with safety hypothesis and analogy." (Lord John Acton, [Lecture] "The Study of History", 1895)
"Now there are subjects upon which the most sober and practical minds cannot help speculating a little beyond what they know. Sure and great results - yet familiar and common and procured at will and by certain means, but in an unaccountable manner - naturally set us thinking and forming notion: how they come to pas ; and then it is safest and best to fill up the gaps of our knowledge from analogy." (Peter M Latham, "General Remarks on the Practice of Medicine", 1861)
"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)
"Induction and analogy are the special characteristics of modern mathematics, in which theorems have given place to theories and no truth is regarded otherwise than as a link in an infinite chain." (James J Sylvester, "A Plea for the Mathematician", Nature Vol. 1, 1870)
"[…] the world is full of hopeful analogies and handsome dubious eggs called possibilities.” (Mary A E Cross [George Eliot], “Middlemarch”, 1872)
"It would be an error to suppose that the great discoverer seizes at once upon the truth, or has any unerring method of divining it. In all probability the errors of the great mind exceed in number those of the less vigorous one. Fertility of imagination and abundance of guesses at truth are among the first requisites of discovery; but the erroneous guesses must be many times as numerous as those that prove well founded. The weakest analogies, the most whimsical notations, the most apparently absurd theories, may pass through the teeming brain, and no record remain of more than the hundredth part." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"Summing up, then, it would seem as if the mind of the great discoverer must combine contradictory attributes. He must be fertile in theories and hypotheses, and yet full of facts and precise results of experience. He must entertain the feeblest analogies, and the merest guesses at truth, and yet he must hold them as worthless till they are verified in experiment. When there are any grounds of probability he must hold tenaciously to an old opinion, and yet he must be prepared at any moment to relinquish it when a clearly contradictory fact is encountered." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)
"The scientific discovery appears first as the hypothesis of an analogy; and science tends to become independent of the hypothesis." (William K Clifford, "Lectures and Essays", 1879)
"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)
"Most surprising and far-reaching analogies revealed themselves between apparently quite disparate natural processes. It seemed that nature had built the most various things on exactly the same pattern; or, in the dry words of the analyst, the same differential equations hold for the most various phenomena. (Ludwig Boltzmann, "On the methods of theoretical physics", 1892)
"How awkward is the human mind in divining the nature of things, when forsaken by the analogy of what we see and touch directly?" (Ludwig Boltzmann, Certain Questions of the Theory of Gasses", Nature Vol. 51 (1322), 1895)
"If men of science owe anything to us, we may learn much from them that is essential. For they can show how to test proof, how to secure fulness and soundness in induction, how to restrain and to employ with safety hypothesis and analogy." (Lord John Acton, [Lecture] "The Study of History", 1895)
No comments:
Post a Comment