18 September 2025

On Pierre de Fermat

Fermat's Last Theorem is to the effect that no integral values of x, y, z can be found to satisfy the equation xn+yn=zn if n is an integer greater than 2. [...] It is possible that Fermat made some... erroneous supposition, though it is perhaps more probable that he discovered a rigorous demonstration. At any rate he asserts definitely that he had a valid proof - demonstratio mirabilis sane - and the fact that no theorem on the subject which he stated he had proved has been subsequently shown to be false must weigh strongly in his favour; the more so because in making the one incorrect statement in his writings (namely, that about binary powers) he added that he could not obtain a satisfactory demonstration of it."(Walter W R Ball, "Mathematical Recreations and Essays", 1920)

 "[…] it took more than a century before some of the simpler results which Fermat had enunciated were proved, and thus it is not surprising that a proof of the theorem which he succeeded in establishing only towards the close of his life should involve great difficulties. [...] I venture however to add my private suspicion that continued fractions played a not unimportant part in his researches, and as strengthening this conjecture I may note that some of his more recondite results - such as the theorem that a prime of the form 4n+1 is expressible as the sum of two squares - may be established with comparative ease by properties of such fractions." (Walter W R Ball, "Mathematical Recreations and Essays", 1920)

"Descartes' method of finding tangents and normals [...]was not a happy inspiration. It was quickly superseded by that of Fermat as amplified by Newton. Fermat's method amounts to obtaining a tangent as the limiting position of a secant, precisely as is done in the calculus today. [...] Fermat's method of tangents is the basis of the claim that he anticipated Newton in the invention of the differential calculus." (Eric T Bell, "The Development of Mathematics", 1940)

"Fermat had recourse to the principle of the economy of nature. Heron and Olympiodorus had pointed out in antiquity that, in reflection, light followed the shortest possible path, thus accounting for the equality of angles. During the medieval period Alhazen and Grosseteste had suggested that in refraction some such principle was also operating, but they could not discover the law. Fermat, however, not only knew (through Descartes) the law of refraction, but he also invented a procedure - equivalent to the differential calculus - for maximizing and minimizing a function of a single variable. [...] Fermat applied his method [...] and discovered, to his delight, that the result led to precisely the law which Descartes had enunciated. But although the law is the same, it will be noted that the hypothesis contradicts that of Descartes. Fermat assumed that the speed of light in water to be less than that in air; Descartes' explanation implied the opposite." (Carl B Boyer, "History of Analytic Geometry", 1956)

"Perhaps nowhere does one find a better example of the value of historical knowledge for mathematicians than in the case of Fermat, for it is safe to say that, had he not been intimately acquainted with the geometry of Apollonius and Viéte, he would not have invented analytic geometry." (Carl B Boyer, "History of Analytic Geometry", 1956)

"There are many ways to use unique prime factorization, and it is rightly regarded as a powerful idea in number theory. In fact, it is more powerful than Euclid could have imagined. There are complex numbers that behave like 'integers' and 'primes', and unique prime factorization holds for them as well. Complex integers were first used around 1770 by Euler, who found they have almost magical powers to unlock secrets of ordinary integers. For example, by using numbers of the form a + b√ -2. where a and b are integers, he was able to prove a claim of Fermat that 27 is the only cube that exceeds a square by 2. Euler's results were correct, but partly by good luck. He did not really understand complex 'primes' and their behavior." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"Solving any of the great unsolved problems in mathematics is akin to the first ascent of Everest. It is a formidable achievement, but after the conquest there is sometimes nowhere to go but down. Some of the great problems have proven to be isolated mountain peaks, disconnected from their neighbors. The Riemann hypothesis is quite different in this regard. There is a large body of mathematical speculation that becomes fact if the Riemann hypothesis is solved. We know many statements of the form “if the Riemann hypothesis, then the following interesting mathematical statement”, and this is rather different from the solution of problems such as the Fermat problem." (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007)

"The master of chess is deeply familiar with these patterns and knows very well the position that would be beneficial to reach. The rest is thinking in a logical way (calculating) about how each piece should be moved to reach the new pattern that has already taken shape in the chess player’s mind. This way of facing chess is closely related to the solving of theorems in mathematics. For example, a mathematician who wishes to prove an equation needs to imagine how the terms on each side of the equal sign can be manipulated so that one is reduced to the other. The enterprise is far from easy, to judge by the more than two hundred years that have been needed to solve theorems such as that of Fermat (z^n = x^n + y^n), using diverse tricks to prove the equation." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Fermat is [...] honored with the invention of the differential calculus on account of his method of maxima and minima and of tangents, which, of the prior processes, is in reality the nearest to the algorithm of Leibniz; one could with equal justice, attribute to him the invention of the integral calculus; his treatise De æquationum localium transmutatione, etc., gives indeed the method of integration by parts as well as rules of integration, except the general powers of variables, their sines and powers thereof. However, it must be remarked that one does not find in his writings a single word on the main point, the relation between the two branches of the infinitesimal calculus." (Paul Tannery, "Fermat" [in La Grande Encyclopédie]) 

On Augustin-Louis Cauchy

"Cauchy is mad, and there is no way of being on good terms with him, although at present he is the only man who knows how mathematics should be treated. What he does is excellent, but very confused…" (Niels H Abel, "Oeuvres", 1826)

"Ultima se tangunt. How expressive, how nicely characterizing withal is mathematics! As the musician recognizes Mozart, Beethoven, Schubert in the first chords, so the mathematician would distinguish his Cauchy, Gauss, Jacobi, Helmholtz in a few pages." (Ludwig Bolzmann, [ceremonial speech] 1887) 

"The mathematical talent of Cayley was characterized by clearness and extreme elegance of analytical form; it was re-enforced by an incomparable capacity for work which has caused the distinguished scholar to be compared with Cauchy." (Charles Hermite, "Comptes Rendus", 1895) 

"The natural development of this work soon led the geometers in their studies to embrace imaginary as well as real values of the variable. The theory of Taylor series, that of elliptic functions, the vast field of Cauchy analysis, caused a burst of productivity derived from this generalization. It came to appear that, between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain." (Paul Painlevé, "Analyse des travaux scientifiques", 1900)

"Thought-economy is most highly developed in mathematics, that science which has reached the highest formal development, and on which natural science so frequently calls for assistance. Strange as it may seem, the strength of mathematics lies in the avoidance of all unnecessary thoughts, in the utmost economy of thought-operations. The symbols of order, which we call numbers, form already a system of wonderful simplicity and economy. When in the multiplication of a number with several digits we employ the multiplication table and thus make use of previously accomplished results rather than to repeat them each time, when by the use of tables of logarithms we avoid new numerical calculations by replacing them by others long since performed, when we employ determinants instead of carrying through from the beginning the solution of a system of equations, when we decompose new integral expressions into others that are familiar, - we see in all this but a faint reflection of the intellectual activity of a Lagrange or Cauchy, who with the keen discernment of a military commander marshalls a whole troop of completed operations in the execution of a new one." (Ernst Mach,/ "Populär-wissenschafliche Vorlesungen", 1903)

"Who has studied the works of such men as Euler, Lagrange, Cauchy, Riemann, Sophus Lie, and Weierstrass, can doubt that a great mathematician is a great artist? The faculties possessed by such men, varying greatly in kind and degree with the individual, are analogous with those requisite for constructive art. Not every mathematician possesses in a specially high degree that critical faculty which finds its employment in the perfection of form, in conformity with the ideal of logical completeness; but every great mathematician possesses the rarer faculty of constructive imagination." (Ernest W Hobson, "Presidential Address British Association for the Advancement of Science", Nature, 1910)

"Some of the most important results (e.g. Cauchy’s theorem) are so surprising at first sight that nothing short of a proof can make them credible." (Harold Jeffreys et al, "Methods of Mathematical Physics", 1946) 

"An unbelievably large literature tried to establish a transcendental ‘law of logistic growth’. Lengthy tables, complete with chi-square tests, supported this thesis for human populations, for bacterial colonies, development of railroads. etc. Both height and weight of plants and animals were found to follow the logistic even though it is theoretically clear these two variables cannot subject to the same distribution. […] The only trouble with the theory is that not only the logistic distribution, but also the normal, the Cauchy, and other distributions can be fitted to the material with the same or better goodness of fit. In thig competition the logistic distribution plays no distinguished role whatever; most theoretical models can be supported by the same observational material. Theories of this nature are short-lived because they open no new ways, and new confirmations of the same old thing soon grow boring. But the naïve reasoning has not been superseded by sense." (William A Feller, "An Introduction to Probability Theory and Its Applications" Vol. 2, 1950) 

"One of the ironies of mathematics is that the ratio of two Gaussian quantities gives a Cauchy quantity. So you get Cauchy noise if you divide one Gaussian white noise process by another. [...] There is a still deeper relationship between the Cauchy and Gaussian bell curves. Both belong to a special family of probability curves called stable distributions [...] Gaussian quantities [...] are closed under addition. If you add two Gaussian noises then the result is still a Gaussian noise. This 'stable' property is not true for most noise or probability types. It is true for Cauchy processes." (Bart Kosko, "Noise", 2006)

"Dirichlet alone, not I, nor Cauchy, nor Gauss knows what a completely rigorous mathematical proof is. Rather we learn it first from him. When Gauss says that he has proved something, it is very clear; when Cauchy says it, one can wager as much pro as con; when Dirichlet says it, it is certain." (Carl G J Jacobi)

"The splendid creations of this theory have excited the admiration of mathematicians mainly because they have enriched our science in an almost unparalleled way with an abundance of new ideas and opened up heretofore wholly unknown fields to research. The Cauchy integral formula, the Riemann mapping theorem and the Weierstrass power series calculus not only laid the groundwork for a new branch of mathematics but at the same time they furnished the first and till now the most fruitful example of the intimate connections between analysis and algebra. But it isn't just the wealth of novel ideas and discoveries which the new theory furnishes; of equal importance on the other hand are the boldness and profundity of the methods by which the greatest of difficulties are overcome and the most recondite of truths, the mysteria functiorum, are exposed tothe brightest." (Richard Dedekind) 

17 September 2025

On Trigonometry XI

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"For centuries, mathematicians had been listening to the primes and hearing only disorganised noise. These numbers were like random notes wildly dotted on a mathematical stave with no discernible tune. Now Riemann had found new ears with which to listen to these mysterious tones. The sine-like waves that Riemann had created from the zeros in his zeta landscape revealed some hidden harmonic structure." (Marcus du Sautoy, "The Music of the Primes", 2003)

"What a wealth of insight Euler’s formula reveals and what delicacy and precision of reasoning it exhibits. It provides a definition of complex exponentiation: It is a definition of complex exponentiation, but the definition proceeds in the most natural way, like a trained singer’s breath. It closes the complex circle once again by guaranteeing that in taking complex numbers to complex powers the mathematician always returns with complex numbers. It justifies the method of infinite series and sums. And it exposes that profound and unsuspected connection between exponential and trigonometric functions; with Euler’s formula the very distinction between trigonometric and exponential functions acquires the shimmer of a desert illusion." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"[…] all roads in mathematics lead to infinity. At any rate, most of the attempts to do the impossible have called upon infinity in one way or another: not necessarily the infinitely large, not necessarily the infinitely small, but certainly the infinitely many." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"Either a logarithmic or a square-root transformation of the data would produce a new series more amenable to fit a simple trigonometric model. It is often the case that periodic time series have rounded minima and sharp-peaked maxima. In these cases, the square root or logarithmic transformation seems to work well most of the time." (DeWayne R Derryberry, "Basic data analysis for time series with R", 2014)

"Euler’s general formula, e^iθ = cos θ + i sin θ, also played a role in bringing about the happy ending of the imaginaries’ ugly duckling story. [...] Euler showed that e raised to an imaginary-number power can be turned into the sines and cosines of trigonometry." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The trig functions’ input consists of the sizes of angles inside right triangles. Their output consists of the ratios of the lengths of the triangles’ sides. Thus, they act as if they contained phone-directory-like groups of paired entries, one of which is an angle, and the other is a ratio of triangle-side lengths associated with the angle. That makes them very useful for figuring out the dimensions of triangles based on limited information." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the 'physical' universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"It is in fact mathematics itself that is simplest in hypothesis and also richest in phenomena (i.e. the simple source of all complexity). In ontological mathematics, all of existence comprises sinusoidal waves arranged into autonomous units called monads, and these are all that are required to explain everything." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

"[…] the derivative of a sine wave is another sine wave, shifted by a quarter cycle. That’s a remarkable property. It’s not true of other kinds of waves. Typically, when we take the derivative of a curve of any kind, that curve will become distorted by being differentiated. It won’t have the same shape before and after. Being differentiated is a traumatic experience for most curves. But not for a sine wave. After its derivative is taken, it dusts itself of f and appears unfazed, as sinusoidal as ever. The only injury it suffers - and it isn’t even an injury, really - is that the sine wave shifts in time. It peaks a quarter of a cycle earlier than it used to." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

16 September 2025

On Tangent

"Mathematics accomplishes really nothing outside of the realm of magnitude; marvellous, however, is the skill with which it masters magnitude wherever it finds it. We recall at once the network of lines which it has spun about heavens and earth; the system of lines to which azimuth and altitude, declination and right ascension, longitude and latitude are referred; those abscissas and ordinates, tangents and normals, circles of curvature and evolutes; those trigonometric and logarithmic functions which have been prepared in advance and await application. A look at this apparatus is sufficient to show that mathematicians are not magicians, but that everything is accomplished by natural means; one is rather impressed by the multitude of skillful machines, numerous witnesses of a manifold and intensely active industry, admirably fitted for the acquisition of true and lasting treasures."(Johann F Herbart, 1890)

"Consider, for instance, one of the white flakes that are obtained by salting a solution of soap. At a distance its contour may appear sharply defined, but as we draw nearer its sharpness disappears. The eye can no longer draw a tangent at any point. A line that at first sight would seem to be satisfactory appears on close scrutiny to be perpendicular or oblique. The use of a magnifying glass or microscope leaves us just as uncertain, for fresh irregularities appear every time we increase the magnification, and we never succeed in getting a sharp, smooth impression, as given, for example, by a steel ball. So, if we accept the latter as illustrating the classical form of continuity, our flake could just as logically suggest the more general notion of a continuous function without a derivative." (Jean-Baptiste Perrin, 1906)

"It must be borne in mind that, although closer observation of any object generally leads to the discovery of a highly irregular structure, we often can with advantage approximate its properties by continuous functions. Although wood may be indefinitely porous, it is useful to speak of a beam that has been sawed and planed as having a finite area. In other words, at certain scales and for certain methods of investigation, many phenomena may be represented by regular continuous functions, somewhat in the same way that a sheet of tinfoil may be wrapped round a sponge without following accurately the latter's complicated contour." (Jean-Baptiste Perrin, 1906)

"Mathematicians, however, are well aware that it is childish to try to show by drawing curves that every continuous function has a derivative. Though differentiable functions are the simplest and the easiest to deal with, they are exceptional. Using geometrical language, curves that have no tangents are the rule, and regular curves, such as the circle, are interesting but quite special." (Jean-Baptiste Perrin, 1906)

"Descartes' method of finding tangents and normals [...] was not a happy inspiration. It was quickly superseded by that of Fermat as amplified by Newton. Fermat's method amounts to obtaining a tangent as the limiting position of a secant, precisely as is done in the calculus today. [...] Fermat's method of tangents is the basis of the claim that he anticipated Newton in the invention of the differential calculus." (Eric T Bell, "The Development of Mathematics", 1940)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The two problems of tangent construction and area evaluation, which previously bore a relation to each other no closer than that of a similarity of type, were now twins, linked by an 'inversion principle'; the powerful algebraic calculus allowed the mathematician to move easily along a whole chain of integrations and differentiations of a function according to his needs. But with power there is always responsibility; and in this case the limitation was that every operation must take place on a function which obeyed a 'law of continuity' (that is, of differentiability). Thus the calculus was understood to operate validly only on those functions which fulfilled these conditions, and they were the differentiable functions: polynomials, trigonometric and exponential functions, and all such algebraic expressions which yielded a definite result from each operation of the calculus." (Ivor Grattan-Guinness, "The Development of the Foundations of Mathematical Analysis from Euler to Riemann", 1970)

"Elementary functions, such as trigonometric functions and rational functions, have their roots in Euclidean geometry. They share the feature that when their graphs are 'magnified' sufficiently, locally they 'look like' straight lines. That is, the tangent line approximation can be used effectively in the vicinity of most points. Moreover, the fractal dimension of the graphs of these functions is always one. These elementary 'Euclidean' functions are useful not only because of their geometrical content, but because they can be expressed by simple formulas. We can use them to pass information easily from one person to another. They provide a common language for our scientific work. Moreover, elementary functions are used extensively in scientific computation, computer-aided design, and data analysis because they can be stored in small files and computed by fast algorithms." (Michael Barnsley, "Fractals Everwhere", 1988)

"The simplest surface of constant negative curvature is called the pseudosphere (somewhat misleadingly, because constant curvature is about all it has in common with the sphere). It is more accurately known as the tractroid, because it is the surface of revolution of the curve known as the tractrix. The defining property of the tractrix is that its tangent has constant length a between the curve and the x-axis." (John Stillwell, The Four Pillars of Geometry, 2000)

"Curvature is a central concept in differential geometry. There are conceptually different ways to define it, associated with different mathematical objects, the metric tensor, and the affine connection. In our case, however, the affine connection may be derived from the metric. The 'affine curvature' is associated with the notion of parallel transport of vectors as introduced by Levi-Civita. This is most simply illustrated in the case of a two- dimensional surface embedded in three- dimensional space. Let us take a closed curve on that surface and attach to a point on that curve a vector tangent to the surface. Let us now transport that vector along the curve, keeping it parallel to itself. When it comes back to its original position, it will coincide with the original vector if the surface is flat or deviate from it by a certain angle if the surface is curved. If one takes a small curve around a point on the surface, then the ratio of the angle between the original and the final vector and the area enclosed by the curve is the curvature at that point. The curvature at a point on a two-dimensional surface is a pure number." (Hanoch Gutfreund, "The Road to Relativity", 2015)

"Fermat is [...] honored with the invention of the differential calculus on account of his method of maxima and minima and of tangents, which, of the prior processes, is in reality the nearest to the algorithm of Leibniz; one could with equal justice, attribute to him the invention of the integral calculus; his treatise De æquationum localium transmutatione, etc., gives indeed the method of integration by parts as well as rules of integration, except the general powers of variables, their sines and powers thereof. However, it must be remarked that one does not find in his writings a single word on the main point, the relation between the two branches of the infinitesimal calculus." (Paul Tannery, "Fermat" [in La Grande Encyclopédie]) 

15 September 2025

François Viète - Collected Quotes

"(1) In analysis the word 'equation', standing by itself, means an equality properly constructed in accordance with [the rules of] zetetics. (2) Thus an equation is a comparison of an unknown magnitude and a known magnitude." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

"It is true that not every geometric construction is elegant, for each particular problem has its own refinements. It is also true that [that construction] is preferred to any other that makes clear not the structure of a work from an equation but the equation from the structure; thus the structure demonstrates itself. So a skillful geometer, although thoroughly versed in analysis, conceals the fact and, while thinking about the accomplishment of his work, sheds light on and explains his problem Then, as an aid to the arithmeticians, he sets out and demonstrates his theorem with the equation or proportion he sees in it." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

"Reduction is a common division45of the homogeneous magnitudes making up an equation by the given magnitude by which the highest grade of the unknown is multiplied so that this grade may lay claim to the title of power by itself and that from this an equation [in proper form] may finally remain." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

"The [analytic] art teaches, in addition, the resolution of [all] powers whatsoever, whether pure or affected, [this last being] something understood by neither the old nor the new mathematicians." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

"There is a certain way of searching for the truth in mathematics that Plato is said first to have discovered. Theon called it analysis, which he defined as assuming that which is sought as if it were admitted [and working] through the consequences [of that assumption] to what is admittedly true, as opposed to synthesis, which is assuming what is [already] admitted [and working] through the consequences [of that assumption] to arrive at and to understand that which is sought." (François Viète, "On the Meaning and Components of Analysis and on Matters Useful to Zetetics", 1591)

In geometry,6 to be sure, the accident of a fraction or an irrational does not usually prevent equations from being solved readily. nor does the imperfection of a negative, for the subject on which the geometer works is always certain. But multiplicity of affections8 is a hindrance, and the higher the power and the order of an affection, the more likely it is that a fraction or surd9 will appear in the solution of a problem." (François Viète, "On the Structure of Equations as Shown by Zetetics, Plasmatic Modification and Syncrisis", 1646)

"Will an analyst attempt [the solution of] any proposed equation without understanding how it is composed so that he can avoid the rocks and crags? Will he [be able to] transpose, depress, raise and generally work with sureness like an expert anatomist if, by some new discovery of zetetics, an unknown is proposed in terms other than those [originally] given but with a given difference from or ratio to that which was proposed?Above all, the origin of equations and their fundamental structure is worthy of being understood by the analyst who strives for and pursues that expertise by which the way of reduction opens itself to him." (François Viète, "De Aequationum Recognitione et Emendatione Tractatus Duo", 1646)

"Syncrisis is the comparison of two correlative equations in order to discover their structure. Two equations are said to be correlatives when they are similar and, in addition, have the same given magnitudes both for the coefficients of their affections and for their homogeneous terms of comparison.66 Their roots, nevertheless, are different either because their structure is such that they may be solved by two or more roots or because the quality or sign of their affections is different." (François Viète, "De Aequationum Recognitione et Emendatione Tractatus Duo", 1646)

"There is nothing more natural, according to all the philosophers, than for anything to resolve itself into the stuff from whence it sprang. So a pure square, a pure cube, or any [other] pure power, whatever its position among the proportionally ascending terms, is clearly made up, by arithmetic operation, of as man> individual roots as the whole root had digits in the beginning. These must be separated [from each other] and extracted in order [to find] the value of the individual parts." (François Viète, "De Numerosa Potestatum ad Exegesim Resolutions", 1600)

14 September 2025

On Bernhardt Riemann

"Riemann has shewn that as there are different kinds of lines and surfaces, so there are different kinds of space of three dimensions; and that we can only find out by experience to which of these kinds the space in which we live belongs. In particular, the axioms of plane geometry are true within the limits of experiment on the surface of a sheet of paper, and yet we know that the sheet is really covered with a number of small ridges and furrows, upon which (the total curvature not being zero) these axioms are not true. Similarly, he says although the axioms of solid geometry are true within the limits of experiment for finite portions of our space, yet we have no reason to conclude that they are true for very small portions; and if any help can be got thereby for the explanation of physical phenomena, we may have reason to conclude that they are not true for very small portions of space." (William K Clifford, "On the Space Theory of Matter", [paper delivered before the Cambridge Philosophical Society, 1870

"Who has studied the works of such men as Euler, Lagrange, Cauchy, Riemann, Sophus Lie, and Weierstrass, can doubt that a great mathematician is a great artist? The faculties possessed by such men, varying greatly in kind and degree with the individual, are analogous with those requisite for constructive art. Not every mathematician possesses in a specially high degree that critical faculty which finds its employment in the perfection of form, in conformity with the ideal of logical completeness; but every great mathematician possesses the rarer faculty of constructive imagination." (Ernest W Hobson, "Presidential Address British Association for the Advancement of Science", Nature, 1910)

"Two Riemann surfaces which can be mapped conformally onto each other are (conformally) equivalent and are to be regarded as different representations of one and the same ideal Riemann surface. The intrinsic properties of a Riemann surface will include only those properties which are invariant under conformal maps; that is, those properties which, if possessed by one Riemann surface are possessed by every equivalent surface. Obviously all topological properties are intrinsic properties of a Riemann surface; similarly with those properties belonging to the surface by virtue of its smoothness." (Hermann Weyl, "The Concept of a Riemann Surface", 1913) 

"No one has ever been able to prove, for example, that every even number greater than two can be expressed as the sum of two primes. Yet this is as well established by observation as any of the laws of physics. It is known that this and various other theorems are true if a certain hypothesis about the Zeta function, enunciated by Riemann nearly a century ago, is correct. No one has been able to prove this hypothesis. It has only been shown that all the consequences deducible if it is true are so far verified by experience. But any day a computer with little knowledge of pure mathematics may disprove it. Here then is a possible triumph for the mathematical amateur." (John B S Haldane, "Possible Worlds and Other Essays", 1928)

"Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be born at a certain time; great mathematicians appeared because the cultural conditions - and this includes the mathematical materials - were conducive to developing them." (Raymond L Wilder, "Introduction to the Foundations of Mathematics", 1952)

"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)

"Riemann concluded that electricity, magnetism, and gravity are caused by the crumpling of our three-dimensional universe in the unseen fourth dimension. Thus a 'force' has no independent life of its own; it is only the apparent effect caused by the distortion of geometry. By introducing the fourth spatial dimension, Riemann accidentally stumbled on what would become one of the dominant themes in modern theoretical physics, that the laws of nature appear simple when expressed in higher-dimensional space. He then set about developing a mathematical language in which this idea could be expressed." (Michio Kaku, "Hyperspace", 1995)

"[...] for more than 40 years I have claimed that if whether an airplane would fly or not depended on whether some function that arose in its design was Lebesgue but not Riemann integrable, then I would not fly in it. Would you? Does Nature recognize the difference? I doubt it! You may, of course, choose as you please in this matter, but I have noticed that year by year the Lebesgue integration, and indeed all of measure theory, seems to be playing a smaller and smaller role in other fields of mathematics, and none at all in fields that merely use mathematics [...]" (Richard W Hamming, "Mathematics On a Distant Planet", The American Mathematical Monthly, 1998)

"Maybe we have become so hung up on looking at the primes from Gauss's and Riemann's perspective that what we are missing is simply a different way to understand these enigmatic numbers. Gauss gave an estimate for the number of primes, Riemann predicted that the guess is at worst the square root of N off its mark, Littlewood showed that you can't do better than this. Maybe there is an alternative viewpoint that no one has found because we have become so culturally attached to the house that Gauss built." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Replacing particles by strings is a naive-sounding step, from which many other things follow. In fact, replacing Feynman graphs by Riemann surfaces has numerous consequences: 1. It eliminates the infinities from the theory. [...] 2. It greatly reduces the number of possible theories. [...] 3. It gives the first hint that string theory will change our notions of spacetime." (Edward Witten, "The Past and Future of String Theory", 2003)

"One of the current ideas regarding the Riemann hypothesis is that the zeros of the zeta function can be interpreted as eigenvalues of certain matrices. This line of thinking is attractive and is potentially a good way to attack the hypothesis, since it gives a possible connection to physical phenomena. [...] Empirical results indicate that the zeros of the Riemann zeta function are indeed distributed like the eigenvalues of certain matrix ensembles, in particular the Gaussian unitary ensemble. This suggests that random matrix theory might provide an avenue for the proof of the Riemann hypothesis." (Peter Borwein et al, "The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike", 2007)

"The splendid creations of this theory have excited the admiration of mathematicians mainly because they have enriched our science in an almost unparalleled way with an abundance of new ideas and opened up heretofore wholly unknown fields to research. The Cauchy integral formula, the Riemann mapping theorem and the Weierstrass power series calculus not only laid the groundwork for a new branch of mathematics but at the same time they furnished the first and till now the most fruitful example of the intimate connections between analysis and algebra. But it isn't just the wealth of novel ideas and discoveries which the new theory furnishes; of equal importance on the other hand are the boldness and profundity of the methods by which the greatest of difficulties are overcome and the most recondite of truths, the mysteria functiorum, are exposed tothe brightest." (Richard Dedekind) 

On Carl Friedrich Gauss

"According to his frequently expressed view, Gauss considered the three dimensions of space as specific peculiarities of the human soul; people, which are unable to comprehend this, he designated in his humorous mood by the name Bœotians. We could imagine ourselves, he said, as beings which are conscious of but two dimensions; higher beings might look at us in a like manner, and continuing jokingly, he said that he had laid aside certain problems which, when in a higher state of being, he hoped to investigate geometrically." (Wolfgang S von Waltershausen, [in Gauss' memory] 1856)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"The invention of the symbol ≡ by Gauss affords a striking example of the advantage which may be derived from an appropriate notation, and marks an epoch in the development of the science of arithmetic." (George B Mathews, "Theory of Numbers", 1892)

"Ultima se tangunt. How expressive, how nicely characterizing withal is mathematics! As the musician recognizes Mozart, Beethoven, Schubert in the first chords, so the mathematician would distinguish his Cauchy, Gauss, Jacobi, Helmholtz in a few pages." (Ludwig Bolzmann, [ceremonial speech] 1887) 

"Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be born at a certain time; great mathematicians appeared because the cultural conditions - and this includes the mathematical materials - were conducive to developing them." (Raymond L Wilder, "Introduction to the Foundations of Mathematics", 1952)

"There is no doubt [...] that mathematicians are generally overzealous about conciseness, and in their passion for brevity indulge in symbols even where these seem no better than a familiar English word or phrase. A faulty judgement has caused mathematicians to equate elegance and conciseness at the cost of intelligibility. Gauss himself wrote elegant, but highly compact, carefully polished papers with no hint of the motivation, meaning, or details of the steps. When criticized, he said that no architect leaves the scaffolding after completing the building. But the fact is that even excellent mathematicians found the reading of Gauss's papers very difficult, and the same is true of many other mathematicians." (Morris Kline, "Mathematics and the Physical World", 1959)

"The histogram, with its columns of area proportional to number, like the bar graph, is one of the most classical of statistical graphs. Its combination with a fitted bell-shaped curve has been common since the days when the Gaussian curve entered statistics. Yet as a graphical technique it really performs quite poorly. Who is there among us who can look at a histogram-fitted Gaussian combination and tell us, reliably, whether the fit is excellent, neutral, or poor? Who can tell us, when the fit is poor, of what the poorness consists? Yet these are just the sort of questions that a good graphical technique should answer at least approximately." (John W Tukey, "The Future of Processes of Data Analysis", 1965)

"If explaining minds seems harder than explaining songs, we should remember that sometimes enlarging problems makes them simpler! The theory of the roots of equations seemed hard for centuries within its little world of real numbers, but it suddenly seemed simple once Gauss exposed the larger world of so-called complex numbers. Similarly, music should make more sense once seen through listeners' minds." (Marvin Minsky, "Music, Mind, and Meaning", 1981)

"The fundamental concept of Gauss’s surface theory is the curvature, a quantity that is positive (and constant) for a sphere, zero for the plane and cylinder, and negative for surfaces that are 'saddle-shaped' in the neighborhood of each point." (John Stillwell, The Four Pillars of Geometry, 2000)

"Gauss liked to call [number theory] 'the Queen of Mathematics'. For Gauss, the jewels in the crown were the primes, numbers which had fascinated and teased generations of mathematicians." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Maybe we have become so hung up on looking at the primes from Gauss's and Riemann's perspective that what we are missing is simply a different way to understand these enigmatic numbers. Gauss gave an estimate for the number of primes, Riemann predicted that the guess is at worst the square root of N off its mark, Littlewood showed that you can't do better than this. Maybe there is an alternative viewpoint that no one has found because we have become so culturally attached to the house that Gauss built." (Marcus du Sautoy, "The Music of the Primes", 2003)

"The revelation that the graph appears to climb so smoothly, even though the primes themselves are so unpredictable, is one of the most miraculous in mathematics and represents one of the high points in the story of the primes. On the back page of his book of logarithms, Gauss recorded the discovery of his formula for the number of primes up to N in terms of the logarithm function. Yet despite the importance of the discovery, Gauss told no one what he had found. The most the world heard of his revelation were the cryptic words, 'You have no idea how much poetry there is in a table of logarithms." (Marcus du Sautoy, "The Music of the Primes", 2003)

"Many scientists who work not just with noise but with probability make a common mistake: They assume that a bell curve is automatically Gauss's bell curve. Empirical tests with real data can often show that such an assumption is false. The result can be a noise model that grossly misrepresents the real noise pattern. It also favors a limited view of what counts as normal versus non-normal or abnormal behavior. This assumption is especially troubling when applied to human behavior. It can also lead one to dismiss extreme data as error when in fact the data is part of a pattern." (Bart Kosko, "Noise", 2006)

"One of the ironies of mathematics is that the ratio of two Gaussian quantities gives a Cauchy quantity. So you get Cauchy noise if you divide one Gaussian white noise process by another. [...] There is a still deeper relationship between the Cauchy and Gaussian bell curves. Both belong to a special family of probability curves called stable distributions [...] Gaussian quantities [...] are closed under addition. If you add two Gaussian noises then the result is still a Gaussian noise. This 'stable' property is not true for most noise or probability types. It is true for Cauchy processes." (Bart Kosko, "Noise", 2006)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"But note that any heavy tailed process, even a power law, can be described in sample (that is finite number of observations necessarily discretized) by a simple Gaussian process with changing variance, a regime switching process, or a combination of Gaussian plus a series of variable jumps (though not one where jumps are of equal size […])." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

"Dirichlet alone, not I, nor Cauchy, nor Gauss knows what a completely rigorous mathematical proof is. Rather we learn it first from him. When Gauss says that he has proved something, it is very clear; when Cauchy says it, one can wager as much pro as con; when Dirichlet says it, it is certain." (Carl G J Jacobi)

On Isaac Newton

"Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction. Newton was indebted to it for his theorem of the binomial and the principle of universal gravity." (Pierre-Simon Laplace, "Philosophical Essay on Probabilities”, 1814)

"[…] with Newton's and Descartes' time, the whole Mathematics, becoming Analytic, walked so rapid steps forward that they left far behind themselves this study without which they already could do and which had ceased to draw on itself that attention which it deserved before." (Nikolai I Lobachevsky, 1829)

"The equations of Newton's mechanics exhibit a two-fold invariance. Their form remains unaltered, firstly, if we subject the underlying system of spatial coordinates to any arbitrary change of position ; secondly, if we change its state of motion, namely, by imparting to it any uniform translatory motion ; furthermore, the zero point of time is given no part to play. We are accustomed to look upon the axioms of geometry as finished with, when we feel ripe for the axioms of mechanics, and for that reason the two invariances are probably rarely mentioned in the same breath. Each of them by itself signifies, for the differential equations of mechanics, a certain group of transformations. The existence of the first group is looked upon as a fundamental characteristic of space. The second group is preferably treated with disdain, so that we with un-troubled minds may overcome the difficulty of never being able to decide, from physical phenomena, whether space, which is supposed to be stationary, may not be after all in a state of uniform translation. Thus the two groups, side by side, lead their lives entirely apart. Their utterly heterogeneous character may have discouraged any attempt to compound them. But it is precisely when they are compounded that the complete group, as a whole, gives us to think." (Hermann Minkowski, "Space and Time" ["Raum und Zeit"], [Address to the 80th Assembly of German Natural Scientists and Physicians] 1908)

"Descartes' method of finding tangents and normals [...]was not a happy inspiration. It was quickly superseded by that of Fermat as amplified by Newton. Fermat's method amounts to obtaining a tangent as the limiting position of a secant, precisely as is done in the calculus today. [...] Fermat's method of tangents is the basis of the claim that he anticipated Newton in the invention of the differential calculus." (Eric T Bell, "The Development of Mathematics", 1940)

“Mathematics does not grow because a Newton, a Riemann, or a Gauss happened to be born at a certain time; great mathematicians appeared because the cultural conditions - and this includes the mathematical materials - were conducive to developing them.” (Raymond L Wilder, “Introduction to the Foundations of Mathematics”, 1952)

"The systems view is the emerging contemporary view of organized complexity, one step beyond the Newtonian view of organized simplicity, and two steps beyond the classical world views of divinely ordered or imaginatively envisaged complexity."  (Ervin László, "Introduction to Systems Philosophy", 1972)

"Quantum mechanics also uses statistics, but there is a very big difference between quantum mechanics and Newtonian physics. In quantum mechanics, there is no way to predict individual events This is the startling lesson that experiments in the subatomic realm have taught us. [...] Quantum physics abandons the laws which govern individual events and states directly the statistical laws which govern collections of events. Quantum mechanics can tell us how a group of particles will behave, but the only thing that it can say about an individual particle is how it probably will behave. Probability is one of the major characteristics of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Much of what the universe had been, was, and would be, Newton had disclosed, was the outcome of an infinity of material particles all pulling on one another simultaneously. If the result of all that gravitational tussling had appeared to the Greeks to be a cosmos, it was simply because the underlying equation describing their behavior had itself turned out to be every bit a cosmos-orderly, beautiful, and decent." (Michael Guillen," Five Equations That Changed the World", 1995)

"Science, and physics in particular, has developed out of the Newtonian paradigm of mechanics. In this world view, every phenomenon we observe can be reduced to a collection of atoms or particles, whose movement is governed by the deterministic laws of nature. Everything that exists now has already existed in some different arrangement in the past, and will continue to exist so in the future. In such a philosophy, there seems to be no place for novelty or creativity." (Francis Heylighen, "The science of self-organization and adaptivity", 2001)

"Granularity is ubiquitous in nature: light is made of photons, the particles of light. The energy of electrons in atoms can acquire only certain values and not others. The purest air is granular, and so, too, is the densest matter. Once it is understood that Newton’s space and time are physical entities like all others, it is natural to suppose that they are also granular. Theory confirms this idea: loop quantum gravity predicts that elementary temporal leaps are small, but finite." (Carlo Rovelli, "The Order of Time", 2018)

"[All phenomena] are equally susceptible of being calculated, and all that is necessary, to reduce the whole of nature to laws similar to those which Newton discovered with the aid of the calculus, is to have a sufficient number of observations and a mathematics that is complex enough." (Nicolas de Condorcet) 

On René Descartes

"The analytical equations, unknown to the ancients, which Descartes first introduced into the study of curves and surfaces, are not restricted to the properties of figures, and to those properties which are the object of rational mechanics; they apply to all phenomena in general. There cannot be a language more universal and more simple, more free from errors and obscurities, that is to say, better adapted to express the invariable relations of nature." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"[…] with Newton's and Descartes' time, the whole Mathematics, becoming Analytic, walked so rapid steps forward that they left far behind themselves this study without which they already could do and which had ceased to draw on itself that attention which it deserved before." (Nikolai I Lobachevsky, 1829)

"The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which can only be compared, for its importance, with the invention of triple coordinates by Descartes. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science." (James Clerk-Maxwell, "Remarks on the Mathematical Classification of Physical Quantities", 1871)

"Descartes' geometry was called 'analytical geometry', partly because unlike the synthetic geometry of the ancients it is actually analytical in the sense that the word is used in logic; and partly because the practice had then already arisen, of designating by the term analysis the calculus [i.e., symbolic calculation or computation] with general quantities." (Florian Cajori, "A History of Mathematics", 1893) 

"In mechanics Descartes can hardly be said to have advanced beyond Galileo. [...] His statement of the first and second laws of motion was an improvement in form, but his third law is false in substance. The motions of bodies in their direct impact was imperfectly understood by Galileo, erroneously given by Descartes, and first correctly stated by Wren, Wallis, and Huygens." (Florian Cajori, "A History of Mathematics", 1893) 

"It is frequently stated that Descartes was the first to apply algebra to geometry. This statement is inaccurate, for Vieta and others had done this before him. Even the Arabs some times used algebra in connection with geometry. The new step that Descartes did take was the introduction into geometry of an analytical method based on the notion of variables and constants, which enabled him to represent curves by algebraic equations. In the Greek geometry, the idea of motion was wanting, but with Descartes it became a very fruitful conception. By him a point on a plane was determined in position by its distances from two fixed right lines or axes. These distances varied with every change of position in the point. This geometric idea of co-ordinate representation, together with the algebraic idea of two variables in one equation having an indefinite number of simultaneous values, furnished a method for the study of loci, which is admirable for the generality of its solutions. Thus the entire conic sections of Apollonius is wrapped up and contained in a single equation of the second degree." (Florian Cajori, "A History of Mathematics", 1893)

"The first important example solved by Descartes in his geometry is the 'problem of Pappus' [...] Of this celebrated problem the Greeks solved only the special case [...] By Descartes it was solved completely, and it afforded an excellent example of the use which can be made of his analytical method in the study of loci. Another solution was given later by Newton in the Principia." (Florian Cajori, "A History of Mathematics", 1893)

"Descartes' method of finding tangents and normals [...] was not a happy inspiration. It was quickly superseded by that of Fermat as amplified by Newton. Fermat's method amounts to obtaining a tangent as the limiting position of a secant, precisely as is done in the calculus today. [...] Fermat's method of tangents is the basis of the claim that he anticipated Newton in the invention of the differential calculus." (Eric T Bell, "The Development of Mathematics", 1940)

"Fermat had recourse to the principle of the economy of nature. Heron and Olympiodorus had pointed out in antiquity that, in reflection, light followed the shortest possible path, thus accounting for the equality of angles. During the medieval period Alhazen and Grosseteste had suggested that in refraction some such principle was also operating, but they could not discover the law. Fermat, however, not only knew (through Descartes) the law of refraction, but he also invented a procedure - equivalent to the differential calculus - for maximizing and minimizing a function of a single variable. [...] Fermat applied his method [...] and discovered, to his delight, that the result led to precisely the law which Descartes had enunciated. But although the law is the same, it will be noted that the hypothesis contradicts that of Descartes. Fermat assumed that the speed of light in water to be less than that in air; Descartes' explanation implied the opposite." (Carl B Boyer, "History of Analytic Geometry", 1956)

"When the absolute concept of coordinate systems introduced by Descartes shifted to the relative concept of coordinate systems introduced by Gauss, a clear differences between continuity and differentiability emerged." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

10 September 2025

On Topology VIII

"Topology has to do with those properties of a space which are left unchanged by the kind of transformation that we have called a topological equivalence or homeomorphism. But what sort of spaces interest us and what exactly do we mean by a 'space? The idea of a homeomorphism involves very strongly the notion of continuity [...]"  (Mark A Armstrong, "Basic Topology", 1979)

"Fractal geometry is concerned with the description, classification, analysis, and observation of subsets of metric spaces (X, d). The metric spaces are usually, but not always, of an inherently 'simple' geometrical character; the subsets are typically geometrically 'complicated'. There are a number of general properties of subsets of metric spaces, which occur over and over again, which are very basic, and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces. Some of these properties, such as openness and closedness, which we are going to introduce, are of a topological character. That is to say, they are invariant under homeomorphism." (Michael Barnsley, "Fractals Everwhere", 1988)

"[…] it is useful to note that there are three basic network topologies. First, there are line or chain networks with many nodes that are spread out in more or less linear fashion. Second, there are star or hub networks, where most important relationships move through a central hub or hubs. Third, there are all-channel networks, in which communications proceed in more or less all directions across the network simultaneously […]." (John Urry, "Global Complexity", 2003)

"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"The most fundamental tool in the subject of point-set topology is the homeomorphism. This is the device by means of which we measure the equivalence of topological spaces." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"A topological property is, therefore, any property that is preserved under the set of all homeomorphisms. […] Homeomorphisms generally fail to preserve distances between points, and they may even fail to preserve shapes." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011) 

Related Posts Plugin for WordPress, Blogger...

On Pierre de Fermat

Fermat's Last Theorem is to the effect that no integral values of x, y, z can be found to satisfy the equation xn+yn=zn if n is an integ...