19 November 2025

On Statistics (1970-1979)

"Statistics: 1. A form of lying that is neither black, white, nor color. 2. An attempt to analyze data-rare and archaic. 3. A disorderly, but not quite random, progress from datum to datum." (David Durand,"A Dictionary for Statismagicians", The American Statistician, Vol. 24, No. 3, 1970)

“Statistics may be defined as the discipline concerned with the treatment of numerical data derived from groups of individuals.” (Peter Armitage, “Statistical Methods in Medical Research”, 1971)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the" (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"A time series is a sequence of observations, usually ordered in time, although in some cases the ordering may be according to another dimension. The feature of time series analysis which distinguishes it from other statistical analysis is the explicit recognition of the importance of the order in which the observations are made. While in many problems the observations are statistically independent, in time series successive observations may be dependent, and the dependence may depend on the positions in the sequence. The nature of a series and the structure of its generating process also may involve in other ways the sequence in which the observations are taken." (Theodore W Anderson, "The Statistical Analysis of Time Series", 1971)

"Statistics may be defined as the discipline concerned with the treatment of numerical data derived from groups of individuals." (Peter Armitage,"Statistical Methods in Medical Research", 1971)

"Statistical procedure and experimental design are only two different aspects of the same whole, and that whole is the logical requirements of the complete process of adding to natural knowledge by experimentation." (Sir Ronald A Fisher, "The Design of Experiments", 1971)

"The statistician cannot excuse himself from the duty of getting his head clear on the principles of scientific inference, but equally no other thinking man can avoid a like obligation." (Sir Ronald A Fisher, "The Design of Experiments", 1971)

"There is more to the calculation of π to a large number of decimal places than just the challenge involved. One reason for doing it is to secure statistical information concerning the 'normalcy' of π. A real number is said to be simply normal if in its decimal expansion all digits occur with equal frequency, and it is said to be normal if all blocks of digits of the same length occur with equal frequency. It is not known if π" (or even √2, for that matter) is normal or even simply normal." (Howard Eves, "Mathematical Circles Revisited", 1971)

"You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage." (John von Neumann) [Suggesting to Claude Shannon a name for his new uncertainty function, see Scientific American Vol. 225 (3), 1971) 

"Confidence in the omnicompetence of statistical reasoning grows by what it feeds on." (Harry Hopkins, "The Numbers Game: The Bland Totalitarianism", 1973)

"Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head - my mental models. None of these is or ever will be the real world. […] Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us." (Donella Meadows, "Limits to Growth", 1972)

"The manipulation of statistical formulas is no substitute for knowing what one is doing." (Hubert M Blalock Jr., "Social Statistics" 2nd Ed., 1972)

"Because we can never be sure that a postulated model is entirely appropriate, we must proceed in such a manner that inadequacies can be taken account of and their implications considered as we go along. To do this we must regard statistical analysis, which is a step in the major iteration […] as itself an iteration. To be on firm ground we must do more than merely postulate a model; we must build and test a tentative model at each stage of the investigation.(George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Confidence in the omnicompetence of statistical reasoning grows by what it feeds on." (Harry Hopkins, "The Numbers Game: The Bland Totalitarianism", 1973)

"Good statistical analysis is not a purely routine matter, and generally calls for more than one pass through the computer. The analysis should be sensitive both to peculiar features in the given numbers and also to whatever background information is available about the variables. The latter is particularly helpful in suggesting alternative ways of setting up the analysis." (Francis J Anscombe, "Graphs in Statistical Analysis", The American Statistician Vol. 27 (1), 1973)

"Graphs can have various purposes, such as: (i) to help us perceive and appreciate some broad features of the data, (ii) to let us look behind those broad features and see what else is there. Most kinds of statistical calculation rest on assumptions about the behavior of the data. Those assumptions may be false, and then the calculations may be misleading. We ought always to try to check whether the assumptions are reasonably correct; and if they are wrong we ought to be able to perceive in what ways they are wrong. Graphs are very valuable for these purposes." (Francis J Anscombe, "Graphs in Statistical Analysis", The American Statistician Vol. 27 (1), 1973)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Statistics are the refuge of the uninformed." (Audrey Haber & Richard P Runion,"General Statistics", 1973)

"Statistics is a body of methods and theory applied to numerical evidence in making decisions in the face of uncertainty." (Lawrence Lapin, "Statistics for Modern Business Decisions", 1973)

"Statistics is ’hocuspocus’ with numbers." (Audrey Haber & Richard P Runion,"General Statistics", 1973)

"Statistics is the refuge of the uninformed." (Audrey Haber & Richard P Runyon, "General Statistics", 1973) 

"The process [of statistical analysis] usually begins by the postulating of a model worthy to be tentatively entertained. The data analyst will have arrived at this tentative model in cooperation with the scientific investigator. They will choose it 'So that, in the light of the then available knowledge, it best takes account of relevant phenomena in the simplest way possible. it will usually contain unknown parameters. Given the data the analyst can now make statistical inferences about the parameters conditional on the correctness of this first tentative model. These inferences form part of the conditional analysis. If the model is correct, they provide all there is to know about the problem under study, given the data." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"When we can’t prove our point through the use of sound reasoning, we fall back upon statistical ‘mumbo jumbo’ to confuse and demoralize our opponents." (Audrey Haber & Richard P. Runyon,"General Statistics", 1973)

"Intuitive judgments of probability are based on a limited number of heuristics that are usually effective but sometimes lead to severe and systematic errors. Research shows, for example, that people judge the probability of a hypothesis by the degree to which it represents the evidence, with little or no regard for its prior probability. Other heuristics lead to an overestimation of the probabilities of highly available or salient events, and to overconfidence in the assessment of subjective probability distributions. These biases are not readily corrected, and they are shared by both naive and statistically sophisticated subjects." (Amos Tversky, "Assessing Uncertainty", Journal of the Royal Statistical Society B Vol. 36 (2), 1974)

"Mathematical statistics does not only study procedures for analysing experimental findings but also elaborates methods for taking decisions under conditions of uncertainty, the uncertainty being such as is characterized by statistical stability." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"Meanwhile, for those who are not aware of it, it is necessary to mention that in the conception we follow and sustain here only subjective probabilities exist - i.e. the degree of belief in the occurrence of an event attributed by a given person at a given instant and with a given set of in information. This is in contrast to other conceptions which limit themselves to special types of cases in which they attribute meaning to 'objective probabilities'" (for instance, cases of symmetry as for dice etc., 'statistical' cases of 'repeatable' events, etc.).(Bruno de Finetti, "Theory of Probability", 1974)

"Statistical methods of analysis are intended to aid the interpretation of data that are subject to appreciable haphazard variability." (David V. Hinkley & David Cox, "Theoretical Statistics", 1974)

"The field of probability and statistics is then transformed into a Tower of Babel, in which only the most naive amateur claims to understand what he says and hears, and this because, in a language devoid of convention, the fundamental distinctions between what is certain and what is not, and between what is impossible and what is not, are abolished. Certainty and impossibility then become confused with high or low degrees of a subjective probability, which is itself denied precisely by this falsification of the language. On the contrary, the preservation of a clear, terse distinction between certainty and uncertainty, impossibility and possibility, is the unique and essential precondition for making meaningful statements" (which could be either right or wrong), whereas the alternative transforms every sentence into a nonsense." (Bruno de Finetti, "Theory of Probability", 1974)

"In the absolute universe all events can be regarded as absolutely deterministic, and if we can’t perceive the greater structures, it’s because our vision is faulty. If we had a real grasp of causality down to the molecular level, we wouldn’t need to rely on mathematical approximations, on statistics and probabilities, in making predictions. If our perceptions of cause and effect were only good enough, we’d be able to attain absolute knowledge of what is to come. We would make ourselves all-seeing." (Robert Silverberg, "The Stochastic Man", 1975)

"No matter how much reverence is paid to anything purporting to be ‘statistics’, the term has no meaning unless the source, relevance, and truth are all checked." (Tom Burnam, "The Dictionary of Misinformation", 1975)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (W Edwards Deming, "On Probability as Basis for Action", American Statistician, Volume 29, Number 4, November 1975)

"A proven theorem of game theory states that every game with complete information possesses a saddle point and therefore a solution." (Richard A Epstein, "The Theory of Gambling and Statistical Logic" [Revised Edition], 1977)

"If enough data is collected, anything may be proved by statistical methods." (Arthur Bloch, "Murphy’s Law", 1977)

"[…] statistics - whatever their mathematical sophistication and elegance - cannot make bad variables into good ones." (H T Reynolds, "Analysis of Nominal Data", 1977)

"Cultural change is the statistical product of the separate behavioral responses of large numbers of human beings who cope as best they can with social existence." (Edward O Wilson, "On Human Nature", 1978)

"Having vegetated on the fringes of mathematical science for centuries, combinatorics has now burgeoned into one of the fastest growing branches of mathematics – undoubtedly so if we consider the number of publications in this field, its applications in other branches of mathematics and in other sciences, and also the interest of scientists, economists and engineers in combinatorial structures. The mathematical world was attracted by the successes of algebra and analysis and only in recent years has it become clear, due largely to problems arising from economics, statistics, electrical engineering and other applied sciences, that combinatorics, the study of finite sets and finite structures, has its own problems and principles. These are independent of those in algebra and analysis but match them in difficulty, practical and theoretical interest and beauty." (László Lovász, "Combinatorial Problems and Exercises", 1979)

"Quantum mechanics also uses statistics, but there is a very big difference between quantum mechanics and Newtonian physics. In quantum mechanics, there is no way to predict individual events This is the startling lesson that experiments in the subatomic realm have taught us. [...] Quantum physics abandons the laws which govern individual events and states directly the statistical laws which govern collections of events. Quantum mechanics can tell us how a group of particles will behave, but the only thing that it can say about an individual particle is how it probably will behave. Probability is one of the major characteristics of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)

"Using data from the population as it stands is a dangerous substitute for testing." (Frederick Mosteller & Gale Mosteller, "New Statistical Methods in Public Policy. Part I: Experimentation", Journal of Contemporary Business 8, 1979)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Accuracy (1800-1899)

"Statistical accounts are to be referred to as a dictionary by men of riper years, and by young men as a grammar, to teach them the rel...