22 November 2025

On Functions (1925-1949)

"Every scientific problem can be stated most clearly if it is thought of as a search for the nature of the relation between two defi nitely stated variables. Very often a scientific problem is felt and stated in other terms, but it cannot be so clearly stated in any way as when it is thought of as a function by which one variable is shown to be dependent upon or related to some other variable." (Louis L Thurstone, "The Fundamentals of Statistics", 1925)

"Meantime, there is no doubt a certain crudeness in the use of a complex wave function. If it were unavoidable in principle, and not merely a facilitation of the calculation, this would mean that there are in principle two wave functions, which must be used together in order to obtain information on the state of the system. [...] Our inability to give more accurate information about this is intimately connected with the fact that, in the pair of equations [considered], we have before us only the substitute - extraordinarily convenient for the calculation, to be sure - for a real wave equation of probably the fourth order, which, however, I have not succeeded in forming for the non-conservative case."(Edwin Schrödinger, "Quantisation as a Problem of Proper Values" , Annalen der Physik Vol. 81" (4), 1926)

"In order to regain in a rigorously defined function those properties that are analogous to those ascribed to an empirical curve with respect to slope and curvature (first and higher difference quotients), we need not only to require that the function is continuous and has a finite number of maxima and minima in a finite interval, but also assume explicitly that it has the first and a series of higher derivatives (as many as one will want to use)." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"No one has ever been able to prove, for example, that every even number greater than two can be expressed as the sum of two primes. Yet this is as well established by observation as any of the laws of physics. It is known that this and various other theorems are true if a certain hypothesis about the Zeta function, enunciated by Riemann nearly a century ago, is correct. No one has been able to prove this hypothesis. It has only been shown that all the consequences deducible if it is true are so far verified by experience. But any day a computer with little knowledge of pure mathematics may disprove it. Here then is a possible triumph for the mathematical amateur." (John B S Haldane, "Possible Worlds and Other Essays", 1928)

"The course of the values of a continuous function is determined at all points of an interval, if only it is determined for all rational points of this interval." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The most general definition of a function that we have reached in modern mathematics starts by fixing the values that the independent variable x can take on. We define that x must successively pass through the points of a certain 'point set'. The language used is therefore geometric […]." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"What had already been done for music by the end of the eighteenth century has at last been begun for the pictorial arts. Mathematics and physics furnished the means in the form of rules to be followed and to be broken. In the beginning it is wholesome to be concerned with the functions and to disregard the finished form. Studies in algebra, in geometry, in mechanics characterize teaching directed towards the essential and the functional, in contrast to apparent. One learns to look behind the façade, to grasp the root of things. One learns to recognize the undercurrents, the antecedents of the visible. One learns to dig down, to uncover, to find the cause, to analyze." (Paul Klee, "Bauhaus prospectus", 1929)

"The general theory of economic equilibrium was strengthened and made effective as an organon of thought by two powerful subsidiary conceptions - the Margin and Substitution. The notion of the Margin was extended beyond Utility to describe the equilibrium point in given conditions of any economic factor which can be regarded as capable of small variations about a given value, or in its functional relation to a given value." (John M Keynes, "Essays In Biography", 1933)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)

"There is thus a possibility that the ancient dream of philosophers to connect all Nature with the properties of whole numbers will some day be realized. To do so physics will have to develop a long way to establish the details of how the correspondence is to be made. One hint for this development seems pretty obvious, namely, the study of whole numbers in modern mathematics is inextricably bound up with the theory of functions of a complex variable, which theory we have already seen has a good chance of forming the basis of the physics of the future. The working out of this idea would lead to a connection between atomic theory and cosmology." (Paul A M Dirac, [Lecture delivered on presentation of the James Scott prize] 1939)

"It should be observed first that the whole concept of a category is essentially an auxiliary one; our basic concepts are essentially those of a functor and of a natural transformation […]. The idea of a category is required only by the precept that every function should have a definite class as domain and a definite class as range, for the categories are provided as the domains and ranges of functors. Thus one could drop the category concept altogether […]" (Samuel Eilenberg & Saunders Mac Lane, "A general theory of natural equivalences", Transactions of the American Mathematical Society 58, 1945)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"The first attempts to consider the behavior of so-called ‘random neural nets’ in a systematic way have led to a series of problems concerned with relations between the 'structure' and the ‘function’ of such nets. The ‘structure’ of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of "this" neuron synapsing on ‘that’ one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport. "Cycle distributions in random nets." The Bulletin of Mathematical Biophysics 10 (3), 1948)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Images (1890-1899)

"Every definite image in the mind is steeped and dyed in the free water that flows around it. With it goes the sense of its relations, ...