"Insight is not the same as scientific deduction, but even at that it may be more reliable than statistics." (Anthony Standen, "Science Is a Sacred Cow", 1950)
"Sampling is the science and art of controlling and measuring the reliability of useful statistical information through the theory of probability." (William E Deming, "Some Theory of Sampling", 1950)
"The philosophy of the foundations of probability must be divorced from mathematics and statistics, exactly as the discussion of our intuitive space concept is now divorced from geometry." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)
"A random sequence is a vague notion embodying the idea of a sequence in which each term is unpredictable to the uninitiated and whose digits pass a certain number of tests traditional with statisticians and depending somewhat on the uses to which the sequence is to be put." (Derrick H Lehmer, 1951)
"A statistical analysis, properly conducted, is a delicate dissection of uncertainties, a surgery of suppositions." (Michael J Moroney, "Facts from Figures", 1951)
"For the most part, Statistics is a method of investigation that is used when other methods are of no avail; it is often a last resort and a forlorn hope. A statistical analysis, properly conducted, is a delicate dissection of uncertainties, a surgery of suppositions. The surgeon must guard carefully against false incisions with his scalpel. Very often he has to sew up the patient as inoperable. The public knows too little about the statistician as a conscientious and skilled servant of true science." (Michael J Moroney, "Facts from Figures", 1951)
"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." (Samuel S. Wilks 1951)
"Statistics is not the easiest subject to teach, and there are those to whom anything savoring of mathematics is regarded as for ever anathema." (Michael J Moroney, "Facts from Figures", 1951)
"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)
"The picture of scientific method drafted by modern philosophy is very different from traditional conceptions. Gone is the ideal of a universe whose course follows strict rules, a predetermined cosmos that unwinds itself like an unwinding clock. Gone is the ideal of the scientist who knows the absolute truth. The happenings of nature are like rolling dice rather than like revolving stars; they are controlled by probability laws, not by causality, and the scientist resembles a gambler more than a prophet. He can tell you only his best posits - he never knows beforehand whether they will come true. He is a better gambler, though, than the man at the green table, because his statistical methods are superior. And his goal is staked higher - the goal of foretelling the rolling dice of the cosmos. If he is asked why he follows his methods, with what title he makes his predictions, he cannot answer that he has an irrefutable knowledge of the future; he can only lay his best bets. But he can prove that they are best bets, that making them is the best he can do - and if a man does his best, what else can you ask of him?" (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)
"The technical analysis of any large collection of data is a task for a highly trained and expensive man who knows the mathematical theory of statistics inside and out. Otherwise the outcome is likely to be a collection of drawings - quartered pies, cute little battleships, and tapering rows of sturdy soldiers in diversified uniforms - interesting enough in the colored Sunday supplement, but hardly the sort of thing from which to draw reliable inferences." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)
"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)
"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)
"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)
"In the fourth place, mathematics is the best describer of the universe about us. In an age that has become statistical and scientific in much of its human endeavor, the need for people to understand these phenomena is not only a cultural necessity but to some extent a necessity for intelligent action." (Howard F Fehr, "Reorientation in Mathematics Education", Teachers Record 54, 1953)
"If you can't prove what you want to prove, demonstrate something else and pretend that they are the something. In the daze that follows the collision of statistics with the human mind, hardly anybody will notice the difference." (Darell Huff, "How to Lie with Statistics", 1954)
"Statistics: The art of dealing with vagueness and with interpersonal difference in decision situations" (Leonard J Savage,"The Foundation of Statistics", 1954)
"The fact is that, despite its mathematical base, statistics is as much an art as it is a science. A great many manipulations and even distortions are possible within the bounds of propriety. Often the statistician must choose among methods, a subjective process, and find the one that he will use to represent the facts." (Darell Huff, "How to Lie with Statistics", 1954)
"The primary purpose of a graph is to show diagrammatically how the values of one of two linked variables change with those of the other. One of the most useful applications of the graph occurs in connection with the representation of statistical data." (John F Kenney & E S Keeping, "Mathematics of Statistics" Vol. I 3rd Ed., 1954)
"The purely random sample is the only kind that can be examined with entire confidence by means of statistical theory, but there is one thing wrong with it. It is so difficult and expensive to obtain for many uses that sheer cost eliminates it." (Harold Hotelling, "How to Lie with Statistics", 1954)
"The secret language of statistics, so appealing in a fact-minded culture, is employed to sensationalize, inflate, confuse, and oversimplify. Statistical methods and statistical terms are necessary in reporting the mass data of social and economic trends, business conditions, 'opinion' polls, the census. But without writers who use the words with honesty and understanding and readers who know what they mean, the result can only be semantic nonsense." (Darell Huff, "How to Lie with Statistics", 1954)
"We secure our mathematical knowledge by demonstrative reasoning, but we support our conjectures by plausible reasoning. A mathematical proof is demonstrative reasoning, but the inductive evidence of the physicist, the circumstantial evidence of the lawyer, the documentary evidence of the historian, and the statistical evidence of the economist belong to plausible reasoning." (George Pólya, "Mathematics and Plausible Reasoning", 1954)
"It is very easy to devise different tests which, on the average, have similar properties, [...] hey behave satisfactorily when the null hypothesis is true and have approximately the same power of detecting departures from that hypothesis. Two such tests may, however, give very different results when applied to a given set of data. The situation leads to a good deal of contention amongst statisticians and much discredit of the science of statistics. The appalling position can easily arise in which one can get any answer one wants if only one goes around to a large enough number of statisticians." (Frances Yates, "Discussion on the Paper by Dr. Box and Dr. Andersen", Journal of the Royal Statistical Society B Vol. 17, 1955)
"Statistical criteria should" (1) be sensitive to change in the specific factors tested," (2) be insensitive to changes, of a magnitude likely to occur in practice, in extraneous factors." (George E P Box, 1955)
"And nobody can get [...] far without at least an acquaintance with the mathematics of probability, not to the extent of making its calculations and filling examination papers with typical equations, but enough to know when they can be trusted, and when they are cooked. For when their imaginary numbers correspond to exact quantities of hard coins unalterably stamped with heads and tails, they are safe within certain limits; for here we have solid certainty [...] but when the calculation is one of no constant and several very capricious variables, guesswork, personal bias, and pecuniary interests, come in so strong that those who began by ignorantly imagining that statistics cannot lie end by imagining equally ignorantly, that they never do anything else." (George B Shaw, "The World of Mathematics", 1956)
"In conventional statistical mechanics the energy plays a preferred role among all dynamical quantities because it is conserved both in the time development of isolated systems and in the interaction of different systems. Since, however, the principles of maximum-entropy inference are independent of any physical properties, it appears that in subjective statistical mechanics all measurable quantities may be treated on the same basis, subject to certain precautions." (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)
"Just as in applied statistics the crux of a problem is often the devising of some method of sampling that avoids bias, our problem is that of finding a probability assignment which avoids bias, while agreeing with whatever information is given. The great advance provided by information theory lies in the discovery that there is a unique, unambiguous criterion for the 'amount of uncertainty' represented by a discrete probability distribution, which agrees with our intuitive notions that a broad distribution represents more uncertainty than does a sharply peaked one, and satisfies all other conditions which make it reasonable." (Edwin T Jaynes, "Information Theory and Statistical Mechanics" I, 1956)
"This 'statistical' method of specifying a system - by specification of distributions with sampling methods - should not be thought of as essentially different from other methods. It includes the case of the system that is exactly specified, for the exact specification is simply one in which each distribution has shrunk till its scatter is zero, and in which, therefore, 'sampling' leads to one inevitable result. What is new about the statistical system is that the specification allows a number of machines, not identical, to qualify for inclusion. The statistical 'machine' should therefore be thought of as a set of machines rather than as one machine." (W Ross Ashby, "An Introduction to Cybernetics", 1956)
"A statistical table is the logical listing of related quantitative data in vertical columns and horizontal rows of numbers with sufficient explanatory and qualifying words, phrases and statements in the form of titles, headings and notes to make clear the full meaning of data and their origin." (Alva M Tuttle, "Elementary Business and Economic Statistics", 1957)
"By the laws of statistics we could probably approximate just how unlikely it is that it would happen. But people forget - especially those who ought to know better, such as yourself - that while the laws of statistics tell you how unlikely a particular coincidence is, they state just as firmly that coincidences do happen." (Robert A Heinlein, "The Door Into Summer", 1957)
"Physics is in the nature of the case indeterminate, and therefore the affair of statistics." (Max Born, "Atomic Physics", 1957)
"Starting from statistical observations and applying to them a clear and precise concept of probability it is possible to arrive at conclusions which are just as reliable and ‘truth-full’ and quite as practically useful as those obtained in any other exact science." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)
"The main interest of physical statistics lies in fact not so much in the distribution of the phenomena in space, but rather in their succession in time." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)
"The problems of statistical physics are of the greatest in our time, since they lead to a revolutionary change in our whole conception of the universe." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)
"The theory of probability can never lead to a definite statement concerning a single event." (Richard von Mises, "Probability, Statistics, and Truth"2nd Ed., 1957)
"The new always happens against the overwhelming odds of statistical laws and their probability, which for all practical, everyday purposes amounts to certainty; the new therefore always appears in the guise of a miracle." (Hannah Arendt, "The Human Condition", 1958)
"In brief, the greatest care must be exercised in using any statistical data, especially when it has been collected by another agency. At all times, the statistician who uses published data must ask himself, by whom were the data collected, how and for what purpose?" (Alfred R Ilersic, "Statistics", 1959)
"Poor statistics may be attributed to a number of causes. There are the mistakes which arise in the course of collecting the data, and there are those which occur when those data are being converted into manageable form for publication. Still later, mistakes arise because the conclusions drawn from the published data are wrong. The real trouble with errors which arise during the course of collecting the data is that they are the hardest to detect." (Alfred R Ilersic, "Statistics", 1959)
"Statistical method consists of two main operations; counting and analysis. [...] The statistician has no use for information that cannot be expressed numerically, nor generally speaking, is he interested in isolated events or examples. The term 'data is itself plural and the statistician is concerned with the analysis of aggregates. " (Alfred R Ilersic, "Statistics", 1959)
"The statistics themselves prove nothing; nor are they at any time a substitute for logical thinking. There are […] many simple but not always obvious snags in the data to contend with. Variations in even the simplest of figures may conceal a compound of influences which have to be taken into account before any conclusions are drawn from the data." (Alfred R Ilersic, "Statistics", 1959)
"[…] the question ‘How many legs does a normal man have?’ should be answered by finding a statistical average. And since some men have only one leg, or none, this would lead inevitably to the conclusion that a ‘normal’ man is equipped with one and some fraction legs." (Joseph W Krutch,"Human Nature and the Human Condition", 1959)
"There are good statistics and bad statistics; it may be doubted if there are many perfect data which are of any practical value. It is the statistician's function to discriminate between good and bad data; to decide when an informed estimate is justified and when it is not; to extract the maximum reliable information from limited and possibly biased data." (Alfred R Ilersic, "Statistics", 1959)
"While it is true to assert that much statistical work involves arithmetic and mathematics, it would be quite untrue to suggest that the main source of errors in statistics and their use is due to inaccurate calculations." (Alfred R Ilersic, "Statistics", 1959)
No comments:
Post a Comment