"After all the progress I have made in these matters, I am still not happy with Algebra, because it provides neither the shortest ways nor the most beautiful constructions of Geometry. This is why when it comes to that, I think that we need another analysis which is properly geometric or linear, which expresses to us directly situm, in the same way as algebra expresses magnitudinem. And I think that I have the tools for that, and that we might represent figures and even engines and motion in character, in the same way as algebra represents numbers in magnitude." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)
"The use of figures is, above all, then, for the purpose of making known certain relations between the objects that we study, and these relations are those which occupy the branch of geometry that we have called Analysis Situs [that is, topology], and which describes the relative situation of points and lines on surfaces, without consideration of their magnitude." (Henri Poincaré, "Analysis Situs", Journal de l'Ecole Polytechnique 1, 1895))
"The Combinatorial Analysis, as it was understood up to the end of the 18th century, was of limited scope and restricted application. [...] Writers on the subject seemed to recognize fully that it was in need of cultivation, that it was of much service in facilitating algebraical operations of all kinds, and that it was the fundamental method of investigation in the theory of Probabilities." (Percy A MacMahon, "Combinatorial Analysis", Encyclopædia Britannica 11th Ed., 1911)
"That branch of mathematics which deals with the continuity properties of two-" (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true" (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)
"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)
"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are." (Henri Poincaré, "Dernières pensées", 1913)
"That branch of mathematics which deals with the continuity properties of two-" (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true" (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)
"It is possible that analysis in the large may eventually reduce to topology, but not until topology has been greatly broadened. It is equally conceivable that the apparently less general situations which arise with such frequency in problems in analysis in the large may form the canonical cases about which the topology of the future can be built." (Marston Morse, "What is Analysis in the Large?", The American Mathematical Monthly Vol. 49" (6), 1942)
No comments:
Post a Comment