"The postulate of randomness thus resolves itself into the question, 'of what population is this a random sample?' which must frequently be asked by every practical statistician." (Ronald Fisher, "On the Mathematical Foundation of Theoretical Statistics", Philosophical Transactions of the Royal Society of London Vol. A222, 1922)
"[…] the methods of statistics are so variable and uncertain, so apt to be influenced by circumstances, that it is never possible to be sure that one is operating with figures of equal weight." (Havelock Ellis, "The Dance of Life", 1923)
"Statistics may be regarded as" (i) the study of populations," (ii) as the study of variation, and" (iii) as the study of methods of the reduction of data." (Sir Ronald A Fisher, "Statistical Methods for Research Worker", 1925)
"The conception of statistics as the study of variation is the natural outcome of viewing the subject as the study of populations; for a population of individuals in all respects identical is completely described by a description of anyone individual, together with the number in the group. The populations which are the object of statistical study always display variations in one or more respects. To speak of statistics as the study of variation also serves to emphasise the contrast between the aims of modern statisticians and those of their predecessors." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"The statistical examination of a body of data is thus logically similar to the general alternation of inductive and deductive methods throughout the sciences. A hypothesis is conceived and defined with all necessary exactitude; its logical consequences are ascertained by a deductive argument; these consequences are compared with the available observations; if these are completely in, accord with the deductions, the hypothesis is justified at least until fresh and more stringent observations are available." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"Intermediate between mathematics, statistics, and economics, we find a new discipline which, for lack of a better name, may be called econometrics. Econometrics has as its aim to subject abstract laws of theoretical political economy or 'pure' economics to experimental and numerical verification, and thus to turn pure economics, as far as possible, into a science in the strict sense of the word." (Ragnar Frisch, "On a Problem in Pure Economics", 1926)
"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations or statistical averages." (Bertrand Russell, "The Analysis of Matter", 1927)
"The statistician’s job is to draw general conclusions from fragmentary data. Too often the data supplied to him for analysis are not only fragmentary but positively incoherent, so that he can do next to nothing with them. Even the most kindly statistician swears heartily under his breath whenever this happens." (M J Moroney, "Facts from Figures", 1927)
"[…] the statistical prediction of the future from the past cannot be generally valid, because whatever is future to any given past, is in tum past for some future. That is, whoever continually revises his judgment of the probability of a statistical generalization by its successively observed verifications and failures, cannot fail to make more successful predictions than if he should disregard the past in his anticipation of the future. This might be called the ‘Principle of statistical accumulation’." (Clarence I Lewis, "Mind and the World-Order: Outline of a Theory of Knowledge", 1929)
There seems to be striking similarities between the role of economic statistics in our society and some of the functions which magic and divination play in primitive society." (Ely Devons, "Essays in Economics", 1929)
No comments:
Post a Comment